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ABSTRACT
In this paper, closed forms of the sum formulas for generalized Tribonacci numbers are presented.
As special cases, we give summation formulas of Tribonacci, Tribonacci-Lucas, Padovan, Perrin,
Narayana and some other third-order linear recurrance sequences.
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1 INTRODUCTION

The generalized Tribonacci sequence {Wn(W0,W1,W2; r, s, t)}n≥0 (or shortly {Wn}n≥0) is defined
as follows:

Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n ≥ 3 (1.1)

where W0,W1,W2 are arbitrary complex numbers and r, s, t are real numbers. The generalized
Tribonacci sequence has been studied by many authors, see for example [1-14].
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The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = −s

t
W−(n−1) −

r

t
W−(n−2) +

1

t
W−(n−3)

for n = 1, 2, 3, ... when t ̸= 0. Therefore, recurrence (1.1) holds for all integer n.

In literature, for example, the following names and notations (see Table 1) are used for the special
case of r, s, t and initial values.

Table 1. A few special case of generalized Tribonacci sequences

No Sequences (Numbers) Notation OEIS [15] References
1 Tribonacci {Tn} = {Wn(0, 1, 1; 1, 1, 1)} A000073, A057597 [16]
2 Tribonacci-Lucas {Kn} = {Wn(3, 1, 3; 1, 1, 1)} A001644, A073145 [16]
3 Tribonacci-Perrin {Mn} = {Wn(3, 0, 2; 1, 1, 1)} [16]
4 modified Tribonacci {Un} = {Wn(1, 1, 1; 1, 1, 1)} [16]
5 modified Tribonacci-Lucas {Gn} = {Wn(4, 4, 10; 1, 1, 1)} [16]
6 adjusted Tribonacci-Lucas {Hn} = {Wn(4, 2, 0; 1, 1, 1)} [16]
7 third order Pell {P (3)

n } = {Wn(0, 1, 2; 2, 1, 1)} A077939, A077978 [17]
8 third order Pell-Lucas {Q(3)

n } = {Wn(3, 2, 6; 2, 1, 1)} A276225, A276228 [17]
9 third order modified Pell {E(3)

n } = {Wn(0, 1, 1; 2, 1, 1)} A077997, A078049 [17]
10 third order Pell-Perrin {R(3)

n } = {Wn(3, 0, 2; 2, 1, 1)}
11 Padovan (Cordonnier) {Pn} = {Wn(1, 1, 1; 0, 1, 1)} A000931 [18]
12 Perrin (Padovan-Lucas) {En} = {Wn(3, 0, 2; 0, 1, 1)} A001608, A078712 [18]
13 Padovan-Perrin {Sn} = {Wn(0, 0, 1; 0, 1, 1)} A000931, A176971 [18]
14 modified Padovan {An} = {Wn(3, 1, 3; 0, 1, 1)} [18]
15 Pell-Padovan {Rn} = {Wn(1, 1, 1; 0, 2, 1)} A066983, A128587 [19]
16 Pell-Perrin {Cn} = {Wn(3, 0, 2; 0, 2, 1)} - [19]
17 third order Fibonacci-Pell {Gn} = {Wn(1, 0, 2; 0, 2, 1)} [19]
18 third order Lucas-Pell {Bn} = {Wn(3, 0, 4; 0, 2, 1)} [19]
19 Jacobsthal-Padovan {Qn} = {Wn(1, 1, 1; 0, 1, 2)} A159284 [20]
20 Jacobsthal-Perrin (-Lucas) {Ln} = {Wn(3, 0, 2; 0, 1, 2)} A072328 [20]
21 adjusted Jacobsthal-Padovan {Kn} = {Wn(0, 1, 0; 0, 1, 2)} [20]
22 modified Jacobsthal-Padovan {Mn} = {Wn(3, 1, 3; 0, 1, 2)} [20]
23 Narayana {Nn} = {Wn(0, 1, 1; 1, 0, 1)} A078012 [21]
24 Narayana-Lucas {Un} = {Wn(3, 1, 1; 1, 0, 1)} A001609 [21]
25 Narayana-Perrin {Hn} = {Wn(3, 0, 2; 1, 0, 1)} [21]
26 third order Jacobsthal {J(3)

n } = {Wn(0, 1, 1; 1, 1, 2)} A077947 [22]
27 third order Jacobsthal-Lucas {j(3)n } = {Wn(2, 1, 5; 1, 1, 2)} A226308 [22]
28 modified third order Jacobsthal-Lucas {K(3)

n } = {Wn(3, 1, 3; 1, 1, 2)} [22]
29 third order Jacobsthal-Perrin {Q(3)

n } = {Wn(3, 0, 2; 1, 1, 2)} [22]
30 3-primes {Gn} = {Wn(0, 1, 2; 2, 3, 5)} [23]
31 Lucas 3-primes {Hn} = {Wn(3, 2, 10; 2, 3, 5)} [23]
32 modified 3-primes {En} = {Wn(0, 1, 1; 2, 3, 5)} [23]
33 reverse 3-primes {Nn} = {Wn(0, 1, 5; 5, 3, 2)} [24]
34 reverse Lucas 3-primes {Sn} = {Wn(3, 5, 31; 5, 3, 2)} [24]
35 reverse modified 3-primes {Un} = {Wn(0, 1, 4; 5, 3, 2)} [24]

Here, OEIS stands for On-line Encyclopedia of Integer Sequences.

The evaluation of sums of these sequences is a challenging issue. Two interesting examples are

n∑
k=0

kTk =
1

2
(nTn+3 − Tn+2 − (n+ 1)Tn+1 + 2)

and
n∑

k=1

kT−k =
1

2
(−3 (n+ 2)T−n−1 − (2n+ 5)T−n−2 − (n+ 3)T−n−3 + 2).

In this work, we derive expressions for sums of generalized Tribonacci numbers. We present some
studies on summing formulas of the numbers in the following Table 2.
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Table 2. A few special study of sum formulas

Name of sequence Papers which deal with summing formulas
Pell and Pell-Lucas [25],[26,27]

Generalized Fibonacci [28,29,30,31,32]
Generalized Tribonacci [33,34,35]
Generalized Tetranacci [36,37,38]
Generalized Pentanacci [39,40]
Generalized Hexanacci [41]

The following Theorem presents some sum formulas of generalized Tribonacci numbers with positive
subscripts.

Theorem 1.1. For n ≥ 0, we have the following formulas:

(a) If r + s+ t− 1 ̸= 0, then
n∑

k=0

Wk =
Ω1

r + s+ t− 1

where

Ω1 = Wn+3 + (1− r)Wn+2 + (1− r − s)Wn+1 −W2 + (r − 1)W1 + (r + s− 1)W0.

(b) If (r + s+ t− 1) (r − s+ t+ 1) ̸= 0 then

n∑
k=0

W2k =
Ω2

(r + s+ t− 1) (r − s+ t+ 1)

where

Ω2 = (−s+1)W2n+2+(t+rs)W2n+1+(t2+rt)W2n+(−1+s)W2+(−t−rs)W1+(−1+r2−s2+rt+2s)W0.

(c) If (r + s+ t− 1) (r − s+ t+ 1) ̸= 0 then

n∑
k=0

W2k+1 =
Ω3

(r − s+ t+ 1) (r + s+ t− 1)

where

Ω3 = (r+t)W2n+2+(s−s2+t2+rt)W2n+1+(t−st)W2n+(−r−t)W2+(−1+s+r2+rt)W1+(−t+st)W0.

Proof. It is given in [35].
The following theorem presents some sum formulas (identities) of generalized Tribonacci numbers
with negative subscripts.

Theorem 1.2. For n ≥ 1, we have the following formulas:

(a) If r + s+ t− 1 ̸= 0 then
n∑

k=1

W−k =
Ω4

r + s+ t− 1

where

Ω4 = −(r + s+ t)W−n−1 − (s+ t)W−n−2 − tW−n−3 +W2 + (1− r)W1 + (1− r − s)W0.
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(b) If (r + s+ t− 1) (r − s+ t+ 1) ̸= 0 then

n∑
k=1

W−2k =
Ω5

(r + s+ t− 1) (r − s+ t+ 1)

where

Ω5 = −(r+t)W−2n+1+(r
2
+rt+s−1)W−2n+(st−t)W−2n−1+(1−s)W2+(t+rs)W1+(1−rt−2s−r

2
+s

2
)W0.

(c) If (r + s+ t− 1) (r − s+ t+ 1) ̸= 0 then

n∑
k=1

W−2k+1 =
Ω6

(r + s+ t− 1) (r − s+ t+ 1)

where

Ω6 = (s−1)W−2n+1−(t+rs)W−2n−(t2+rt)W−2n−1+(r+t)W2+(1−r2−rt−s)W1+(t−st)W0.

Proof. It is given in [35].

2 SUM FORMULAS OF GENERALIZED TRIBONACCI NUMBERS
WITH POSITIVE SUBSCRIPTS

The following Theorem presents some linear summing formulas of generalized Tribonacci numbers
with positive subscripts.

Theorem 2.1. For n ≥ 0, we have the following formulas:

(a) If r + s+ t− 1 ̸= 0 then
n∑

k=0

kWk =
∆1

(r + s+ t− 1)2
,

(b) if (r + s+ t− 1) (r − s+ t+ 1) ̸= 0 then

n∑
k=0

kW2k =
∆2

(r − s+ t+ 1)2 (r + s+ t− 1)2
,

(c) if (r + s+ t− 1) (r − s+ t+ 1) ̸= 0 then

n∑
k=0

kW2k+1 =
∆3

(r − s+ t+ 1)2 (r + s+ t− 1)2
,

where

∆1 =
6∑

k=1

Γk, ∆2 =
6∑

k=1

Θk, ∆3 =
6∑

k=1

Φk,

with
Γ1 = (n(r + s+ t− 1) + 2r + s− 3)Wn+3,

Γ2 = −(n(r − 1)(r + s+ t− 1) + 2r2 + rs− 4r + t+ 2)Wn+2,

Γ3 = −(n(r + s− 1)(r + s+ t− 1) + r2 + s2 + 2rs− rt− 2r − 2s+ 2t+ 1)Wn+1,

Γ4 = −(r − t− 2)W2,

Γ5 = (r2 − rt− 2r + s+ 2t+ 1)W1,
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Γ6 = −t(2r + s− 3)W0,

Θ1 = −(n(s− 1)(r + s+ t− 1)(r − s+ t+ 1) + r2s− st2 + s2 + 2t2 + 2rt− 2s+ 1)W2n+2,

Θ2 = (t+ rs)(n(r + s+ t− 1)(r − s+ t+ 1) + r2 − t2 + 2s− 2)W2n+1,

Θ3 = t(n(r+ t)(r+ s+ t− 1)(r− s+ t+1)+ r3 +2r2t+ rt2 − s2t+2rs+4st− 2r− 3t)W2n,

Θ4 = (r2s− st2 + s2 + 2t2 + 2rt− 2s+ 1)W2,

Θ5 = −(t+ rs)(r2 − t2 + 2s− 2)W1,

Θ6 = −t(r3 + 2r2t− s2t+ rt2 − 2r − 3t+ 2rs+ 4st)W0,

Φ1 = (n(r + t)(r − s+ t+ 1)(r + s+ t− 1)− t3 − r2t+ rs2 − 2rt2 + 2st− r − 2t)W2n+2,

Φ2 = (n(r+ s+ t− 1)(r− s+ t+1)(s+ rt− s2 + t2)− r2s2 +2r2t2 + r3t+ rt3 − s3 +2st2 −
3t2 + 2s2 − 2rt− s)W2n+1,

Φ3 = −t(n(s− 1)(r − s+ t+ 1)(r + s+ t− 1) + r2s− st2 + 2t2 + s2 + 2rt− 2s+ 1)W2n,

Φ4 = (t3 + r2t− rs2 + 2rt2 + 2t− 2st+ r)W2,

Φ5 = −(−r2s2 + 2r2t2 + r3t+ rt3 − s3 + 2st2 + 2s2 − 3t2 − 2rt− s)W1,

Φ6 = t(r2s− st2 + s2 + 2t2 + 2rt− 2s+ 1)W0.

Proof.

(a) Using the recurrence relation

Wn = rWn−1 + sWn−2 + tWn−3

i.e.
tWn−3 = Wn − rWn−1 − sWn−2

we obtain

tnWn = nWn+3 − rnWn+2 − snWn+1

t(n− 1)Wn−1 = (n− 1)Wn+2 − r(n− 1)Wn+1 − s(n− 1)Wn

t(n− 2)Wn−2 = (n− 2)Wn+1 − r(n− 2)Wn − s(n− 2)Wn−1

...

t× 3×W3 = 3×W6 − r × 3×W5 − s× 3×W4

t× 2×W2 = 2×W5 − r × 2×W4 − s× 2×W3

t× 1×W1 = 1×W4 − r × 1×W3 − s× 1×W2.

If we add the equations side by side, we get

(r + s+ t− 1)

n∑
k=0

kWk = nWn+3 + (n− nr − 1)Wn+2 + (n+ r − nr − ns− 2)Wn+1(2.1)

+W2 + (2− r)W1 + (3− 2r − s)W0 + (2r + s− 3)

n∑
k=0

Wk.

Then, using Theorem 1.1 (a) and solving (2.1), the required result of (a) follows.

(b) and (c) Using the recurrence relation

Wn = rWn−1 + sWn−2 + tWn−3

i.e.
rWn−1 = Wn − sWn−2 − tWn−3
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we obtain

r(n+ 1)W2n+3 = (n+ 1)W2n+4 − s(n+ 1)W2n+2 − t(n+ 1)W2n+1

rnW2n+1 = nW2n+2 − snW2n − tnW2n−1

r(n− 1)W2n−1 = (n− 1)W2n − s(n− 1)W2n−2 − t(n− 1)W2n−3

...

r × 4×W9 = 4×W10 − s× 4×W8 − t× 4×W7

r × 3×W7 = 3×W8 − s× 3×W6 − t× 3×W5

r × 2×W5 = 2×W6 − s× 2×W4 − t× 2×W3

r × 1×W3 = 1×W4 − s× 1×W2 − t× 1×W1.

Now, if we add the above equations side by side, we get

(r+t)

n∑
k=0

kW2k+1 = nW2n+2+(n+1)tW2n+1+W0+(1−s)

n∑
k=0

kW2k−
n∑

k=0

W2k−t

n∑
k=0

W2k+1.

(2.2)
Similarly, using the recurrence relation

Wn = rWn−1 + sWn−2 + tWn−3,

i.e.
rWn−1 = Wn − sWn−2 − tWn−3,

we write the following obvious equations;

rnW2n = nW2n+1 − snW2n−1 − tnW2n−2

r(n− 1)W2n−2 = (n− 1)W2n−1 − s(n− 1)W2n−3 − t(n− 1)W2n−4

...

r × 3×W6 = 3×W7 − s× 3×W5 − t× 3×W4

r × 2×W4 = 2×W5 − s× 2×W3 − t× 2×W2

r × 1×W2 = 1×W3 − s× 1×W1 − t× 1×W0

r × 0×W0 = 0×W1 − s× 0×W−1 − t× 0×W−2.

Now, if we add the above equations side by side, we obtain

(r+t)

n∑
k=0

kW2k = (n+1)sW2n+1+t(n+1)W2n+(1−s)

n∑
k=0

kW2k+1−t

n∑
k=0

W2k−s

n∑
k=0

W2k+1.

(2.3)
Then, using Theorem 1.1 (b) and (c) and solving the system (2.2)-(2.3), the required result of
(b) and (c) follow.

2.1 Special Cases
In this section, we present the closed form solutions (identities) of the sums

∑n
k=0 kWk,

∑n
k=0 kW2k

and
∑n

k=0 kW2k+1 for the specific case of sequence {Wn}.

Taking r = s = t = 1 in Theorem 2.1, we obtain the following proposition.

Proposition 2.1. If r = s = t = 1 then for n ≥ 0 we have the following formulas:
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(a)
∑n

k=0 kWk = 1
2
(nWn+3 −Wn+2 − (n+ 1)Wn+1 +W2 +W1).

(b)
∑n

k=0 kW2k = 1
4
(−W2n+2 + 2nW2n+1 + (2n+ 1)W2n +W2 −W0).

(c)
∑n

k=0 kW2k+1 = 1
4
((2n− 1)W2n+2 + 2nW2n+1 −W2n +W2 +W0).

From the above proposition, we have the following corollary which gives sum formulas of Tribonacci
numbers (take Wn = Tn with T0 = 0, T1 = 1, T2 = 1).

Corollary 2.2. For n ≥ 0, Tribonacci numbers have the following properties:

(a)
∑n

k=0 kTk = 1
2
(nTn+3 − Tn+2 − (n+ 1)Tn+1 + 2).

(b)
∑n

k=0 kT2k = 1
4
(−T2n+2 + 2nT2n+1 + (2n+ 1)T2n + 1).

(c)
∑n

k=0 kT2k+1 = 1
4
((2n− 1)T2n+2 + 2nT2n+1 − T2n + 1).

Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3 in the last proposition, we have the following corollary
which presents sum formulas of Tribonacci-Lucas numbers.

Corollary 2.3. For n ≥ 0, Tribonacci-Lucas numbers have the following properties:

(a)
∑n

k=0 kKk = 1
2
(nKn+3 −Kn+2 − (n+ 1)Kn+1 + 4).

(b)
∑n

k=0 kK2k = 1
4
(−K2n+2 + 2nK2n+1 + (2n+ 1)K2n).

(c)
∑n

k=0 kK2k+1 = 1
4
((2n− 1)K2n+2 + 2nK2n+1 −K2n + 6).

From the last proposition, we have the following corollary which gives sum formulas of Tribonacci-
Perrin numbers (take Wn = Mn with M0 = 3,M1 = 0,M2 = 2).

Corollary 2.4. For n ≥ 0, Tribonacci-Perrin numbers have the following properties:

(a)
∑n

k=0 kMk = 1
2
(nMn+3 −Mn+2 − (n+ 1)Mn+1 + 2).

(b)
∑n

k=0 kM2k = 1
4
(−M2n+2 + 2nM2n+1 + (2n+ 1)M2n − 1).

(c)
∑n

k=0 kM2k+1 = 1
4
((2n− 1)M2n+2 + 2nM2n+1 −M2n + 5).

Taking Wn = Un with U0 = 1, U1 = 1, U2 = 1 in the last proposition, we have the following corollary
which presents sum formulas of modified Tribonacci numbers.

Corollary 2.5. For n ≥ 0, modified Tribonacci numbers have the following properties:

(a)
∑n

k=0 kUk = 1
2
(nUn+3 − Un+2 − (n+ 1)Un+1 + 2).

(b)
∑n

k=0 kU2k = 1
4
(−U2n+2 + 2nU2n+1 + (2n+ 1)U2n).

(c)
∑n

k=0 kU2k+1 = 1
4
((2n− 1)U2n+2 + 2nU2n+1 − U2n + 2).

From the last proposition, we have the following corollary which gives sum formulas of modified
Tribonacci-Lucas numbers (take Wn = Gn with G0 = 4, G1 = 4, G2 = 10).

Corollary 2.6. For n ≥ 0, modified Tribonacci-Lucas numbers have the following properties:

(a)
∑n

k=0 kGk = 1
2
(nGn+3 −Gn+2 − (n+ 1)Gn+1 + 14).

(b)
∑n

k=0 kG2k = 1
4
(−G2n+2 + 2nG2n+1 + (2n+ 1)G2n + 6).

(c)
∑n

k=0 kG2k+1 = 1
4
((2n− 1)G2n+2 + 2nG2n+1 −G2n + 14).

Taking Wn = Hn with H0 = 4, H1 = 2, H2 = 0 in the last proposition, we have the following corollary
which presents sum formulas of adjusted Tribonacci-Lucas numbers.
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Corollary 2.7. For n ≥ 0, adjusted Tribonacci-Lucas numbers have the following properties:

(a)
∑n

k=0 kHk = 1
2
(nHn+3 −Hn+2 − (n+ 1)Hn+1 + 2).

(b)
∑n

k=0 kH2k = 1
4
(−H2n+2 + 2nH2n+1 + (2n+ 1)H2n − 4).

(c)
∑n

k=0 kH2k+1 = 1
4
((2n− 1)H2n+2 + 2nH2n+1 −H2n + 4).

Taking r = 2, s = 1, t = 1 in Theorem 2.1, we obtain the following proposition.

Proposition 2.2. If r = 2, s = 1, t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 kWk = 1
9
((3n+ 2)Wn+3 − (3n+ 5)Wn+2 − (6n+ 4)Wn+1 +W2 + 2W1 − 2W0).

(b)
∑n

k=0 kW2k = 1
9
(−W2n+2 + (3n+ 1)W2n+1 + (3n+ 2)W2n +W2 −W1 − 2W0).

(c)
∑n

k=0 kW2k+1 = 1
9
((3n− 1)W2n+2 + (3n+ 1)W2n+1 −W2n +W2 −W1 +W0).

From the last proposition, we have the following corollary which gives sum formulas of Third-order
Pell numbers (take Wn = Pn with P0 = 0, P1 = 1, P2 = 1).

Corollary 2.8. For n ≥ 0, third-order Pell numbers have the following properties:

(a)
∑n

k=0 kPk = 1
9
((3n+ 2)Pn+3 − (3n+ 5)Pn+2 − (6n+ 4)Pn+1 + 4).

(b)
∑n

k=0 kP2k = 1
9
(−P2n+2 + (3n+ 1)P2n+1 + (3n+ 2)P2n + 1).

(c)
∑n

k=0 kP2k+1 = 1
9
((3n− 1)P2n+2 + (3n+ 1)P2n+1 − P2n + 1).

Taking Wn = Qn with Q0 = 3, Q1 = 2, Q2 = 6 in the last proposition, we have the following corollary
which presents sum formulas of third-order Pell-Lucas numbers.

Corollary 2.9. For n ≥ 0, third-order Pell-Lucas numbers have the following properties:

(a)
∑n

k=0 kQk = 1
9
((3n+ 2)Qn+3 − (3n+ 5)Qn+2 − (6n+ 4)Qn+1 + 4).

(b)
∑n

k=0 kQ2k = 1
9
(−Q2n+2 + (3n+ 1)Q2n+1 + (3n+ 2)Q2n − 2).

(c)
∑n

k=0 kQ2k+1 = 1
9
((3n− 1)Q2n+2 + (3n+ 1)Q2n+1 −Q2n + 7).

From the last proposition, we have the following corollary which gives sum formulas of third-order
modified Pell numbers (take Wn = En with E0 = 0, E1 = 1, E2 = 1).

Corollary 2.10. For n ≥ 0, third-order modified Pell numbers have the following properties:

(a)
∑n

k=0 kEk = 1
9
((3n+ 2)En+3 − (3n+ 5)En+2 − (6n+ 4)En+1 + 3).

(b)
∑n

k=0 kE2k = 1
9
(−E2n+2 + (3n+ 1)E2n+1 + (3n+ 2)E2n).

(c)
∑n

k=0 kE2k+1 = 1
9
((3n− 1)E2n+2 + (3n+ 1)E2n+1 − E2n).

Taking Wn = Rn with R0 = 3, R1 = 0, R2 = 2 in the last proposition, we have the following corollary
which presents sum formulas of third-order Pell-Perrin numbers.

Corollary 2.11. For n ≥ 0, third-order Pell-Perrin numbers have the following properties:

(a)
∑n

k=0 kRk = 1
9
((3n+ 2)Rn+3 − (3n+ 5)Rn+2 − (6n+ 4)Rn+1 − 4).

(b)
∑n

k=0 kR2k = 1
9
(−R2n+2 + (3n+ 1)R2n+1 + (3n+ 2)R2n − 4).

(c)
∑n

k=0 kR2k+1 = 1
9
((3n− 1)R2n+2 + (3n+ 1)R2n+1 −R2n + 5).

Taking r = 0, s = 1, t = 1 in Theorem 2.1, we obtain the following proposition.

Proposition 2.3. If r = 0, s = 1, t = 1 then for n ≥ 0 we have the following formulas:
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(a)
∑n

k=0 kWk = (n− 2)Wn+3 + (n− 3)Wn+2 − 2Wn+1 + 3W2 + 4W1 + 2W0.

(b)
∑n

k=0 kW2k = −W2n+2 + (n− 1)W2n+1 + nW2n +W2 +W1.

(c)
∑n

k=0 kW2k+1 = (n− 1)W2n+1 + (n− 1)W2n+2 −W2n +W2 +W1 +W0.

From the last proposition, we have the following corollary which gives sum formulas of Padovan
numbers (take Wn = Pn with P0 = 1, P1 = 1, P2 = 1).

Corollary 2.12. For n ≥ 0, Padovan numbers have the following properties:

(a)
∑n

k=0 kPk = (n− 2)Pn+3 + (n− 3)Pn+2 − 2Pn+1 + 9.

(b)
∑n

k=0 kP2k = −P2n+2 + (n− 1)P2n+1 + nP2n + 2.

(c)
∑n

k=0 kP2k+1 = (n− 1)P2n+1 + (n− 1)P2n+2 − P2n + 3.

Taking Wn = En with E0 = 3, E1 = 0, E2 = 2 in the last proposition, we have the following corollary
which presents sum formulas of Perrin numbers.

Corollary 2.13. For n ≥ 0, Perrin numbers have the following properties:

(a)
∑n

k=0 kEk = (n− 2)En+3 + (n− 3)En+2 − 2En+1 + 12.

(b)
∑n

k=0 kE2k = −E2n+2 + (n− 1)E2n+1 + nE2n + 2.

(c)
∑n

k=0 kE2k+1 = (n− 1)E2n+1 + (n− 1)E2n+2 − E2n + 5.

From the last proposition, we have the following corollary which gives sum formulas of Padovan-Perrin
numbers (take Wn = Sn with S0 = 0, S1 = 0, S2 = 1).

Corollary 2.14. For n ≥ 0, Padovan-Perrin numbers have the following properties:

(a)
∑n

k=0 kSk = (n− 2)Sn+3 + (n− 3)Sn+2 − 2Sn+1 + 3.

(b)
∑n

k=0 kS2k = −S2n+2 + (n− 1)S2n+1 + nS2n + 1.

(c)
∑n

k=0 kS2k+1 = (n− 1)S2n+1 + (n− 1)S2n+2 − S2n + 1.

Taking Wn = An with A0 = 3, A1 = 1, A2 = 3 in the last proposition, we have the following corollary
which presents sum formulas of modified Padovan numbers.

Corollary 2.15. For n ≥ 0, modified Padovan numbers have the following properties:

(a)
∑n

k=0 kAk = (n− 2)An+3 + (n− 3)An+2 − 2An+1 + 19.

(b)
∑n

k=0 kA2k = −A2n+2 + (n− 1)A2n+1 + nA2n + 4.

(c)
∑n

k=0 kA2k+1 = (n− 1)A2n+1 + (n− 1)A2n+2 −A2n + 7.

Taking r = 0, s = 2, t = 1 in Theorem 2.1, we obtain the following theorem.

Theorem 2.16. If r = 0, s = 2, t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 kWk = 1
4
((2n− 1)Wn+3 + (2n− 3)Wn+2 − (2n+ 3)Wn+1 + 3W2 + 5W1 +W0).

(b)
∑n

k=0 kW2k = 1
2
(n (n+ 3)W2n+2 − n (n+ 1)W2n+1 − (n+ 2) (n+ 1)W2n + 2W0).

(c)
∑n

k=0 kW2k+1 = 1
2
(−n (n+ 1)W2n+2 + (n2 + 3n− 2)W2n+1 + n (n+ 3)W2n + 2W1).

Proof.
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(a) Taking r = 0, s = 2, t = 1 in Theorem 2.1 (a), we obtain

n∑
k=0

kWk =
1

4
((2n− 1)Wn+3 + (2n− 3)Wn+2 − (2n+ 3)Wn+1 + 3W2 + 5W1 +W0).

(b) It can be proved by induction.

(c) It can be proved by induction.

From the last theorem, we have the following corollary which gives sum formulas of Pell-Padovan
numbers (take Wn = Rn with R0 = 1, R1 = 1, R2 = 1).

Corollary 2.17. For n ≥ 0, Pell-Padovan numbers have the following properties:

(a)
∑n

k=0 kRk = 1
4
((2n− 1)Rn+3 + (2n− 3)Rn+2 − (2n+ 3)Rn+1 + 9).

(b)
∑n

k=0 kR2k = 1
2
(n (n+ 3)R2n+2 − n (n+ 1)R2n+1 − (n+ 2) (n+ 1)R2n + 2).

(c)
∑n

k=0 kR2k+1 = 1
2
(−n (n+ 1)R2n+2 + (n2 + 3n− 2)R2n+1 + n (n+ 3)R2n + 2).

Taking Wn = Cn with C0 = 3, C1 = 0, C2 = 2 in the last theorem, we have the following corollary
which presents sum formulas of Pell-Perrin numbers.

Corollary 2.18. For n ≥ 0, Pell-Perrin numbers have the following properties:

(a)
∑n

k=0 kCk = 1
4
((2n− 1)Cn+3 + (2n− 3)Cn+2 − (2n+ 3)Cn+1 + 9).

(b)
∑n

k=0 kC2k = 1
2
(n (n+ 3)C2n+2 − n (n+ 1)C2n+1 − (n+ 2) (n+ 1)C2n + 6).

(c)
∑n

k=0 kC2k+1 = 1
2
(−n (n+ 1)C2n+2 + (n2 + 3n− 2)C2n+1 + n (n+ 3)C2n).

From the last theorem, we have the following corollary which gives sum formulas of third order
Fibonacci-Pell numbers (take Wn = Gn with G0 = 1, G1 = 0, G2 = 2).

Corollary 2.19. For n ≥ 0, third order Fibonacci-Pell numbers have the following properties:

(a)
∑n

k=0 kGk = 1
4
((2n− 1)Gn+3 + (2n− 3)Gn+2 − (2n+ 3)Gn+1 + 7).

(b)
∑n

k=0 kG2k = 1
2
(n (n+ 3)G2n+2 − n (n+ 1)G2n+1 − (n+ 2) (n+ 1)G2n + 2).

(c)
∑n

k=0 kG2k+1 = 1
2
(−n (n+ 1)G2n+2 + (n2 + 3n− 2)G2n+1 + n (n+ 3)G2n).

Taking Wn = Bn with B0 = 3, B1 = 0, B2 = 4 in the last theorem, we have the following corollary
which presents sum formulas of third order Lucas-Pell numbers.

Corollary 2.20. For n ≥ 0, third order Lucas-Pell numbers have the following properties:

(a)
∑n

k=0 kBk = 1
4
((2n− 1)Bn+3 + (2n− 3)Bn+2 − (2n+ 3)Bn+1 + 15).

(b)
∑n

k=0 kB2k = 1
2
(n (n+ 3)B2n+2 − n (n+ 1)B2n+1 − (n+ 2) (n+ 1)B2n + 6).

(c)
∑n

k=0 kB2k+1 = 1
2
(−n (n+ 1)B2n+2 + (n2 + 3n− 2)B2n+1 + n (n+ 3)B2n).

Taking r = 0, s = 1, t = 2 in Theorem 2.1, we obtain the following proposition.

Proposition 2.4. If r = 0, s = 1, t = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 kWk = 1
2
((n− 1)Wn+3 + (n− 2)Wn+2 − 2Wn+1 + 2W2 + 3W1 + 2W0).

(b)
∑n

k=0 kW2k = 1
4
(−W2n+2 + 2 (n− 1)W2n+1 + 4nW2n1 +W2 + 2W1).

(c)
∑n

k=0 kW2k+1 = 1
4
(2 (n− 1)W2n+2 + (4n− 1)W2n+1 − 2W2n + 2W2 +W1 + 2W0).
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From the last proposition, we have the following corollary which gives sum formulas of Jacobsthal-
Padovan numbers (take Wn = Qn with Q0 = 1, Q1 = 1, Q2 = 1).

Corollary 2.21. For n ≥ 0, Jacobsthal-Padovan numbers have the following properties:

(a)
∑n

k=0 kQk = 1
2
((n− 1)Qn+3 + (n− 2)Qn+2 − 2Qn+1 + 7).

(b)
∑n

k=0 kQ2k = 1
4
(−Q2n+2 + 2 (n− 1)Q2n+1 + 4nQ2n1 + 3).

(c)
∑n

k=0 kQ2k+1 = 1
4
(2 (n− 1)Q2n+2 + (4n− 1)Q2n+1 − 2Q2n + 5).

Taking Wn = Ln with L0 = 3, L1 = 0, L2 = 2 in the last proposition, we have the following corollary
which presents sum formulas of Jacobsthal-Perrin numbers.

Corollary 2.22. For n ≥ 0, Jacobsthal-Perrin numbers have the following properties:

(a)
∑n

k=0 kLk = 1
2
((n− 1)Ln+3 + (n− 2)Ln+2 − 2Ln+1 + 10).

(b)
∑n

k=0 kL2k = 1
4
(−L2n+2 + 2 (n− 1)L2n+1 + 4nL2n1 + 2).

(c)
∑n

k=0 kL2k+1 = 1
4
(2 (n− 1)L2n+2 + (4n− 1)L2n+1 − 2L2n + 10).

From the last proposition, we have the following corollary which gives sum formulas of adjusted
Jacobsthal-Padovan numbers (take Wn = Kn with K0 = 0,K1 = 1,K2 = 0).

Corollary 2.23. For n ≥ 0, adjusted Jacobsthal-Padovan numbers have the following properties:

(a)
∑n

k=0 kKk = 1
2
((n− 1)Kn+3 + (n− 2)Kn+2 − 2Kn+1 + 3).

(b)
∑n

k=0 kK2k = 1
4
(−K2n+2 + 2 (n− 1)K2n+1 + 4nK2n1 + 2).

(c)
∑n

k=0 kK2k+1 = 1
4
(2 (n− 1)K2n+2 + (4n− 1)K2n+1 − 2K2n + 1).

Taking Wn = Mn with M0 = 3,M1 = 1,M2 = 3 in the last proposition, we have the following corollary
which presents sum formulas of modified Jacobsthal-Padovan numbers.

Corollary 2.24. For n ≥ 0, modified Jacobsthal-Padovan numbers have the following properties:

(a)
∑n

k=0 kMk = 1
2
((n− 1)Mn+3 + (n− 2)Mn+2 − 2Mn+1 + 15).

(b)
∑n

k=0 kM2k = 1
4
(−M2n+2 + 2 (n− 1)M2n+1 + 4nM2n1 + 5).

(c)
∑n

k=0 kM2k+1 = 1
4
(2 (n− 1)M2n+2 + (4n− 1)M2n+1 − 2M2n + 13).

Taking r = 1, s = 0, t = 1 in Theorem 2.1, we obtain the following proposition.

Proposition 2.5. If r = 1, s = 0, t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 kWk = (n− 1)Wn+3 −Wn+2 −Wn+1 + 2W2 +W1 +W0.

(b)
∑n

k=0 kW2k = 1
9
((3n− 5)W2n+2 + (3n− 2)W2n+1 + (6n− 1)W2n + 5W2 + 2W1 +W0).

(c)
∑n

k=0 kW2k+1 = 1
9
((6n− 7)W2n+2 + (6n− 1)W2n+1 + (3n− 5)W2n + 7W2 +W1 + 5W0).

From the last proposition, we have the following corollary which gives sum formulas of Narayana
numbers (take Wn = Nn with N0 = 0, N1 = 1, N2 = 1).

Corollary 2.25. For n ≥ 0, Narayana numbers have the following properties:

(a)
∑n

k=0 kNk = ((n− 1)Nn+3 −Nn+2 −Nn+1 + 3) .

(b)
∑n

k=0 kN2k = 1
9
((3n− 5)N2n+2 + (3n− 2)N2n+1 + (6n− 1)N2n + 7).

(c)
∑n

k=0 kN2k+1 = 1
9
((6n− 7)N2n+2 + (6n− 1)N2n+1 + (3n− 5)N2n + 8).
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Taking Wn = Un with U0 = 3, U1 = 1, U2 = 1 in the last proposition, we have the following corollary
which presents sum formulas of Narayana-Lucas numbers.

Corollary 2.26. For n ≥ 0, Narayana-Lucas numbers have the following properties:

(a)
∑n

k=0 kUk = ((n− 1)Un+3 − Un+2 − Un+1 + 6) .

(b)
∑n

k=0 kU2k = 1
9
((3n− 5)U2n+2 + (3n− 2)U2n+1 + (6n− 1)U2n + 10).

(c)
∑n

k=0 kU2k+1 = 1
9
((6n− 7)U2n+2 + (6n− 1)U2n+1 + (3n− 5)U2n + 23).

From the last proposition, we have the following corollary which gives sum formulas of Narayana-
Perrin numbers (take Wn = Hn with H0 = 3, H1 = 0, H2 = 2).

Corollary 2.27. For n ≥ 0, Narayana-Perrin numbers have the following properties:

(a)
∑n

k=0 kHk = ((n− 1)Hn+3 −Hn+2 −Hn+1 + 7) .

(b)
∑n

k=0 kH2k = 1
9
((3n− 5)H2n+2 + (3n− 2)H2n+1 + (6n− 1)H2n + 13).

(c)
∑n

k=0 kH2k+1 = 1
9
((6n− 7)H2n+2 + (6n− 1)H2n+1 + (3n− 5)H2n + 29).

Taking r = 1, s = 1, t = 2 in Theorem 2.1, we obtain the following proposition.

Proposition 2.6. If r = 1, s = 1, t = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 kWk = 1
3
(nWn+3 −Wn+2 − (n+ 1)Wn+1 +W2 +W1).

(b)
∑n

k=0 kW2k = 1
9
(−W2n+2 + (3n− 1)W2n+1 + 2 (3n+ 1)W2n +W2 +W1 − 2W0).

(c)
∑n

k=0 kW2k+1 = 1
9
((3n− 2)W2n+2 + (6n+ 1)W2n+1 − 2W2n + 2W2 −W1 + 2W0).

From the last proposition, we have the following corollary which gives sum formulas of third order
Jacobsthal numbers (take Wn = Jn with J0 = 0, J1 = 1, J2 = 1).

Corollary 2.28. For n ≥ 0, third order Jacobsthal numbers have the following properties:

(a)
∑n

k=0 kJk = 1
3
(nJn+3 − Jn+2 − (n+ 1) Jn+1 + J2 + J1).

(b)
∑n

k=0 kJ2k = 1
9
(−J2n+2 + (3n− 1) J2n+1 + 2 (3n+ 1) J2n + J2 + J1 − 2J0).

(c)
∑n

k=0 kJ2k+1 = 1
9
((3n− 2) J2n+2 + (6n+ 1) J2n+1 − 2J2n + 2J2 − J1 + 2J0).

Taking Wn = jn with j0 = 2, j1 = 1, j2 = 5 in the last proposition, we have the following corollary
which presents sum formulas of third order Jacobsthal-Lucas numbers.

Corollary 2.29. For n ≥ 0, third order Jacobsthal-Lucas numbers have the following properties:

(a)
∑n

k=0 kjk = 1
3
(njn+3 − jn+2 − (n+ 1) jn+1 + j2 + j1).

(b)
∑n

k=0 kj2k = 1
9
(−j2n+2 + (3n− 1) j2n+1 + 2 (3n+ 1) j2n + j2 + j1 − 2j0).

(c)
∑n

k=0 kj2k+1 = 1
9
((3n− 2) j2n+2 + (6n+ 1) j2n+1 − 2j2n + 2j2 − j1 + 2j0).

From the last proposition, we have the following corollary which gives sum formulas of modified third
order Jacobsthal-Lucas numbers (take Wn = Kn with K0 = 3,K1 = 1,K2 = 3).

Corollary 2.30. For n ≥ 0, modified third order Jacobsthal-Lucas numbers have the following properties:

(a)
∑n

k=0 kKk = 1
3
(nKn+3 −Kn+2 − (n+ 1)Kn+1 +K2 +K1).

(b)
∑n

k=0 kK2k = 1
9
(−K2n+2 + (3n− 1)K2n+1 + 2 (3n+ 1)K2n +K2 +K1 − 2K0).

(c)
∑n

k=0 kK2k+1 = 1
9
((3n− 2)K2n+2 + (6n+ 1)K2n+1 − 2K2n + 2K2 −K1 + 2K0).
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Taking Wn = Qn with Q0 = 3, Q1 = 0, Q2 = 2 in the last proposition, we have the following corollary
which presents sum formulas of third order Jacobsthal-Perrin numbers.

Corollary 2.31. For n ≥ 0, third order Jacobsthal-Perrin numbers have the following properties:

(a)
∑n

k=0 kQk = 1
3
(nQn+3 −Qn+2 − (n+ 1)Qn+1 +Q2 +Q1).

(b)
∑n

k=0 kQ2k = 1
9
(−Q2n+2 + (3n− 1)Q2n+1 + 2 (3n+ 1)Q2n +Q2 +Q1 − 2Q0).

(c)
∑n

k=0 kQ2k+1 = 1
9
((3n− 2)Q2n+2 + (6n+ 1)Q2n+1 − 2Q2n + 2Q2 −Q1 + 2Q0).

Taking r = 2, s = 3, t = 5 in Theorem 2.1, we obtain the following proposition.

Proposition 2.7. If r = 2, s = 3, t = 5 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 kWk = 1
81
((9n+ 4)Wn+3 − (9n+ 13)Wn+2 − (36n+ 16)Wn+1 + 5W2 + 4W1 − 20W0).

(b)
∑n

k=0 kW2k = 1
2025

(− (90n+ 11)W2n+2 +11 (45n− 17)W2n+1 +5 (315n+ 106)W2n +11W2 +
187W1 − 530W0).

(c)
∑n

k=0 kW2k+1 = 1
2025

((315n− 209)W2n+2+(1305n+ 497)W2n+1−5 (90n+ 11)W2n+209W2+
55W0 − 497W1).

From the last proposition, we have the following corollary which gives sum formulas of 3-primes
numbers (take Wn = Gn with G0 = 0, G1 = 1, G2 = 2).

Corollary 2.32. For n ≥ 0, 3-primes numbers have the following properties:

(a)
∑n

k=0 kGk = 1
81
((9n+ 4)Gn+3 − (9n+ 13)Gn+2 − (36n+ 16)Gn+1 + 14).

(b)
∑n

k=0 kG2k = 1
2025

(− (90n+ 11)G2n+2 + 11 (45n− 17)G2n+1 + 5 (315n+ 106)G2n + 209).

(c)
∑n

k=0 kG2k+1 = 1
2025

((315n− 209)G2n+2 + (1305n+ 497)G2n+1 − 5 (90n+ 11)G2n − 79).

Taking Wn = Hn with H0 = 3,H1 = 2, H2 = 10 in the last proposition, we have the following corollary
which presents sum formulas of Lucas 3-primes numbers.

Corollary 2.33. For n ≥ 0, Lucas 3-primes numbers have the following properties:

(a)
∑n

k=0 kHk = 1
81
((9n+ 4)Hn+3 − (9n+ 13)Hn+2 − (36n+ 16)Hn+1 − 2).

(b)
∑n

k=0 kH2k = 1
2025

(− (90n+ 11)H2n+2 + 11 (45n− 17)H2n+1 + 5 (315n+ 106)H2n − 1106).

(c)
∑n

k=0 kH2k+1 = 1
2025

((315n− 209)H2n+2 + (1305n+ 497)H2n+1 − 5 (90n+ 11)H2n + 1261).

From the last proposition, we have the following corollary which gives sum formulas of modified 3-
primes numbers (take Wn = En with E0 = 0, E1 = 1, E2 = 1).

Corollary 2.34. For n ≥ 0, modified 3-primes numbers have the following properties:

(a)
∑n

k=0 kEk = 1
81
((9n+ 4)En+3 − (9n+ 13)En+2 − (36n+ 16)En+1 + 9).

(b)
∑n

k=0 kE2k = 1
2025

(− (90n+ 11)E2n+2 + 11 (45n− 17)E2n+1 + 5 (315n+ 106)E2n + 198).

(c)
∑n

k=0 kE2k+1 = 1
2025

((315n− 209)E2n+2 + (1305n+ 497)E2n+1 − 5 (90n+ 11)E2n − 288).

Taking r = 5, s = 3, t = 2 in Theorem 2.1, we obtain the following proposition.

Proposition 2.8. If r = 5, s = 3, t = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 kWk = 1
81
((9n+ 10)Wn+3 − (36n+ 49)Wn+2 − (63n+ 43)Wn+1 −W2 +13W1 − 20W0).

(b)
∑n

k=0 kW2k = 1
405

(− (18n+ 19)W2n+2+17 (9n+ 5)W2n+1+2 (63n+ 53)W2n+19W2−85W1−
106W0).
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(c)
∑n

k=0 kW2k+1 = 1
405

((63n− 10)W2n+2+(72n+ 49)W2n+1−2 (18n+ 19)W2n+10W2−49W1+
38W0).

From the last proposition, we have the following corollary which gives sum formulas of reverse 3-
primes numbers (take Wn = Nn with N0 = 0, N1 = 1, N2 = 5).

Corollary 2.35. For n ≥ 0, reverse 3-primes numbers have the following properties:

(a)
∑n

k=0 kNk = 1
81
((9n+ 10)Nn+3 − (36n+ 49)Nn+2 − (63n+ 43)Nn+1 + 8).

(b)
∑n

k=0 kN2k = 1
405

(− (18n+ 19)N2n+2 + 17 (9n+ 5)N2n+1 + 2 (63n+ 53)N2n + 10).

(c)
∑n

k=0 kN2k+1 = 1
405

((63n− 10)N2n+2 + (72n+ 49)N2n+1 − 2 (18n+ 19)N2n + 1).

Taking Wn = Sn with S0 = 3, S1 = 5, S2 = 31 in the last proposition, we have the following corollary
which presents sum formulas of reverse Lucas 3-primes numbers.

Corollary 2.36. For n ≥ 0, reverse Lucas 3-primes numbers have the following properties:

(a)
∑n

k=0 kSk = 1
81
((9n+ 10)Sn+3 − (36n+ 49)Sn+2 − (63n+ 43)Sn+1 − 26).

(b)
∑n

k=0 kS2k = 1
405

(− (18n+ 19)S2n+2 + 17 (9n+ 5)S2n+1 + 2 (63n+ 53)S2n − 154).

(c)
∑n

k=0 kS2k+1 = 1
405

((63n− 10)S2n+2 + (72n+ 49)S2n+1 − 2 (18n+ 19)S2n + 179).

From the last proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take Wn = Un with U0 = 0, U1 = 1, U2 = 4).

Corollary 2.37. For n ≥ 0, reverse modified 3-primes numbers have the following properties:

(a)
∑n

k=0 kUk = 1
81
((9n+ 10)Un+3 − (36n+ 49)Un+2 − (63n+ 43)Un+1 + 9).

(b)
∑n

k=0 kU2k = 1
405

(− (18n+ 19)U2n+2 + 17 (9n+ 5)U2n+1 + 2 (63n+ 53)U2n − 9).

(c)
∑n

k=0 kU2k+1 = 1
405

((63n− 10)U2n+2 + (72n+ 49)U2n+1 − 2 (18n+ 19)U2n − 9).

3 SUM FORMULAS OF GENERALIZED TRIBONACCI NUMBERS
WITH NEGATIVE SUBSCRIPTS

The following Theorem presents some sum formulas (identities) of generalized Tribonacci numbers
with negative subscripts.

Theorem 3.1. For n ≥ 1, we have the following formulas:

(a) If r + s+ t− 1 ̸= 0 then
n∑

k=1

kW−k =
Λ1

(r + s+ t− 1)2
,

(b) if (r + s+ t− 1) (r − s+ t+ 1) ̸= 0 then

n∑
k=1

kW−2k =
Λ2

(r − s+ t+ 1)2 (r + s+ t− 1)2
,

and
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(c) if (r + s+ t− 1) (r − s+ t+ 1) ̸= 0 then
n∑

k=1

kW−2k+1 =
Λ3

(r − s+ t+ 1)2 (r + s+ t− 1)2
,

where

Λ1 =

6∑
k=1

λk, Λ2 =

6∑
k=1

θk, Λ3 =

6∑
k=1

µk,

with
λ1 = −(n(r + s+ t)(r + s+ t− 1) + r2 + s2 + t2 + 2rs+ 2rt+ 2st+ s+ 2t)W−n−1,

λ2 = −(n(s+ t)(r + s+ t− 1) + 2s2 + 2t2 + rs+ 4st+ t)W−n−2,

λ3 = t(−n(r + s+ t− 1)− r − 2s− 3t)W−n−3,

λ4 = −(r − t− 2)W2,

λ5 = (r2 − rt− 2r + s+ 2t+ 1)W1,

λ6 = −t(2r + s− 3)W0,

θ1 = −(n(r + t)(r − s+ t+ 1)(r + s+ t− 1) + t3 − rs2 + 2rt2 + r2t− 2st+ r + 2t)W−2n+1,

θ2 = (n(r − s+ t+ 1)(r + s+ t− 1)(s+ rt+ r2 − 1) + r3t+ rt3 − r2s2 + 2r2t2 − s3 + 2st2 +
2s2 − 3t2 − 2rt− s)W−2n,

θ3 = t(n(s− 1)(r + s+ t− 1)(r − s+ t+ 1)− r2s+ st2 − s2 − 2t2 − 2rt+ 2s− 1)W−2n−1,

θ4 = (r2s− st2 + s2 + 2t2 + 2rt− 2s+ 1)W2,

θ5 = −(t+ rs)(r2 − t2 + 2s− 2)W1,

θ6 = −t(r3 + 2r2t+ rt2 − s2t+ 2rs+ 4st− 2r − 3t)W0,

µ1 = (n(s − 1)(r + s + t − 1)(r − s + t + 1) − s3 + 2st2 + 2rst − r2 + 2s2 − 3t2 − 4rt − s)
W−2n+1,

µ2 = (t+ rs)(−n(r + s+ t− 1)(r − s+ t+ 1) + s2 − 2t2 − 2rt− 1)W−2n,

µ3 = −t(n(r + t)(r− s+ t+ 1)(r+ s+ t− 1) + t3 + 2rt2 + r2t− rs2 − 2st+ r + 2t)W−2n−1,

µ4 = (r2t+ t3 − rs2 + 2rt2 − 2st+ r + 2t)W2,

µ5 = −(r3t+ rt3 − r2s2 + 2r2t2 + 2st2 − s3 + 2s2 − 3t2 − 2rt− s)W1,

µ6 = t(r2s− st2 + s2 + 2t2 + 2rt− 2s+ 1)W0.

Proof.

(a) Using the recurrence relation

W−n+3 = r×W−n+2+s×W−n+1+t×W−n ⇒ W−n = −s

t
W−(n−1)−

r

t
W−(n−2)+

1

t
W−(n−3)

i.e.
tW−n = W−n+3 − rW−n+2 − sW−n+1,

or
W−n =

1

t
W−n+3 −

r

t
W−n+2 −

s

t
W−n+1,

we obtain

tnW−n = nW−n+3 − rnW−n+2 − snW−n+1

t(n− 1)W−n+1 = (n− 1)W−n+4 − r(n− 1)W−n+3 − s(n− 1)W−n+2

t(n− 2)W−n+2 = (n− 2)W−n+5 − r(n− 2)W−n+4 − s(n− 2)W−n+3

...

t× 3×W−3 = 3×W0 − r × 3×W−1 − s× 3×W−2

t× 2×W−2 = 2×W1 − r × 2×W0 − s× 2×W−1

t× 1×W−1 = 1×W2 − r × 1×W1 − s× 1×W0.
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If we add the equations side by side, we get

(r + s + t − 1)
n∑

k=1

kW−k = −(3r + 2s + t + nr + ns + nt)W−n−1 − (3s + 2t + ns + nt)W−n−2 (3.1)

−t(n + 3)W−n−3 + W2 + (2 − r)W1 − (2r + s − 3)W0 − (2r + s − 3)
n∑

k=1

W−k.

Then, using Theorem 1.2 (a) and solving (3.1), the required result of (a) follows.

(b) and (c) Using the recurrence relation

W−n+3 = rW−n+2 + sW−n+1 + tW−n,

i.e.
sW−n+1 = W−n+3 − rW−n+2 − tW−n,

we obtain

snW−2n+1 = nW−2n+3 − rnW−2n+2 − tnW−2n

s(n− 1)W−2n+3 = (n− 1)W−2n+5 − r(n− 1)W−2n+4 − t(n− 1)W−2n+2

s(n− 2)W−2n+5 = (n− 2)W−2n+7 − r(n− 2)W−2n+6 − t(n− 2)W−2n+4

...

s× 3×W−5 = 3×W−3 − r × 3×W−4 − t× 3×W−6

s× 2×W−3 = 2×W−1 − r × 2×W−2 − t× 2×W−4

s× 1×W−1 = 1×W1 − r × 1×W0 − t× 1×W−2.

If we add the equations side by side, we get

(s−1)
n∑

k=1

kW−2k+1 = −(n+1)W−2n+1+r(n+1)W−2n+W1−rW0−(r+t)
n∑

k=1

kW−2k+
n∑

k=1

W−2k+1−r
n∑

k=1

W−2k.

(3.2)

Similarly, using the recurrence relation

W−n+3 = rW−n+2 + sW−n+1 + tW−n

i.e.
sW−n+1 = W−n+3 − rW−n+2 − tW−n

we obtain

snW−2n = nW−2n+2 − rnW−2n+1 − tnW−2n−1

s(n− 1)W−2n+2 = (n− 1)W−2n+4 − r(n− 1)W−2n+3 − t(n− 1)W−2n+1

s(n− 2)W−2n+4 = (n− 2)W−2n+6 − r(n− 2)W−2n+5 − t(n− 2)W−2n+3

...

s× 3×W−6 = 3×W−4 − r × 3×W−5 − t× 3×W−7

s× 2×W−4 = 2×W−2 − r × 2×W−3 − t× 2×W−5

s× 1×W−2 = 1×W0 − r × 1×W−1 − t× 1×W−3

If we add the equations side by side, we get

(s−1)
n∑

k=1

kW−2k = −(n+1)W−2n−tnW−2n−1+W0−(r+t)
n∑

k=1

kW−2k+1+t
n∑

k=1

W−2k+1+
n∑

k=1

W−2k.

(3.3)
Then, using Theorem 1.2 (b) and (c) and solving system (3.2)-(3.3) the required result of (b)
and (c) follow.
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3.1 Special Cases
In this section, we present the closed form solutions (identities) of the sums

∑n
k=1 kW−k,

∑n
k=1 kW−2k

and
∑n

k=1 kW−2k+1 for the specific case of sequence {Wn}.

Taking r = s = t = 1 in Theorem 3.1, we obtain the following proposition.

Proposition 3.1. If r = s = t = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 kW−k = 1
2
(−3 (n+ 2)W−n−1 − (2n+ 5)W−n−2 − (n+ 3)W−n−3 +W2 +W1).

(b)
∑n

k=1 kW−2k = 1
4
(− (2n+ 1)W−2n+1 + 2nW−2n −W−2n−1 +W2 −W0).

(c)
∑n

k=1 kW−2k+1 = 1
4
(−W−2n+1 − 2 (n+ 1)W−2n − (2n+ 1)W−2n−1 +W2 +W0).

From the above proposition, we have the following corollary which gives sum formulas of Tribonacci
numbers (take Wn = Tn with T0 = 0, T1 = 1, T2 = 1).

Corollary 3.2. For n ≥ 1, Tribonacci numbers have the following properties:

(a)
∑n

k=1 kT−k = 1
2
(−3 (n+ 2)T−n−1 − (2n+ 5)T−n−2 − (n+ 3)T−n−3 + 2).

(b)
∑n

k=1 kT−2k = 1
4
(− (2n+ 1)T−2n+1 + 2nT−2n − T−2n−1 + 1).

(c)
∑n

k=1 kT−2k+1 = 1
4
(−T−2n+1 − 2 (n+ 1)T−2n − (2n+ 1)T−2n−1 + 1).

Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3 in the last proposition, we have the following corollary
which presents sum formulas of Tribonacci-Lucas numbers.

Corollary 3.3. For n ≥ 1, Tribonacci-Lucas numbers have the following properties:

(a)
∑n

k=1 kK−k = 1
2
(−3 (n+ 2)K−n−1 − (2n+ 5)K−n−2 − (n+ 3)K−n−3 + 4).

(b)
∑n

k=1 kK−2k = 1
4
(− (2n+ 1)K−2n+1 + 2nK−2n −K−2n−1).

(c)
∑n

k=1 kK−2k+1 = 1
4
(−K−2n+1 − 2 (n+ 1)K−2n − (2n+ 1)K−2n−1 + 6).

From the last proposition, we have the following corollary which gives sum formulas of Tribonacci-
Perrin numbers (take Wn = Mn with M0 = 3,M1 = 0,M2 = 2).

Corollary 3.4. For n ≥ 1, Tribonacci-Perrin numbers have the following properties:

(a)
∑n

k=1 kM−k = 1
2
(−3 (n+ 2)M−n−1 − (2n+ 5)M−n−2 − (n+ 3)M−n−3 + 2).

(b)
∑n

k=1 kM−2k = 1
4
(− (2n+ 1)M−2n+1 + 2nM−2n −M−2n−1 − 1).

(c)
∑n

k=1 kM−2k+1 = 1
4
(−M−2n+1 − 2 (n+ 1)M−2n − (2n+ 1)M−2n−1 + 5).

Taking Wn = Un with U0 = 1, U1 = 1, U2 = 1 in the last proposition, we have the following corollary
which presents sum formulas of modified Tribonacci numbers.

Corollary 3.5. For n ≥ 1, modified Tribonacci numbers have the following properties:

(a)
∑n

k=1 kU−k = 1
2
(−3 (n+ 2)U−n−1 − (2n+ 5)U−n−2 − (n+ 3)U−n−3 + 2).

(b)
∑n

k=1 kU−2k = 1
4
(− (2n+ 1)U−2n+1 + 2nU−2n − U−2n−1).

(c)
∑n

k=1 kU−2k+1 = 1
4
(−U−2n+1 − 2 (n+ 1)U−2n − (2n+ 1)U−2n−1 + 2).

From the last proposition, we have the following corollary which gives sum formulas of modified
Tribonacci-Lucas numbers (take Wn = Gn with G0 = 4, G1 = 4, G2 = 10).

Corollary 3.6. For n ≥ 1, modified Tribonacci-Lucas numbers have the following properties:
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(a)
∑n

k=1 kG−k = 1
2
(−3 (n+ 2)G−n−1 − (2n+ 5)G−n−2 − (n+ 3)G−n−3 + 14).

(b)
∑n

k=1 kG−2k = 1
4
(− (2n+ 1)G−2n+1 + 2nG−2n −G−2n−1 + 6).

(c)
∑n

k=1 kG−2k+1 = 1
4
(−G−2n+1 − 2 (n+ 1)G−2n − (2n+ 1)G−2n−1 + 14).

Taking Wn = Hn with H0 = 4, H1 = 2, H2 = 0 in the last proposition, we have the following corollary
which presents sum formulas of adjusted Tribonacci-Lucas numbers.

Corollary 3.7. For n ≥ 1, adjusted Tribonacci-Lucas numbers have the following properties:

(a)
∑n

k=1 kH−k = 1
2
(−3 (n+ 2)H−n−1 − (2n+ 5)H−n−2 − (n+ 3)H−n−3 + 2).

(b)
∑n

k=1 kH−2k = 1
4
(− (2n+ 1)H−2n+1 + 2nH−2n −H−2n−1 − 4).

(c)
∑n

k=1 kH−2k+1 = 1
4
(−H−2n+1 − 2 (n+ 1)H−2n − (2n+ 1)H−2n−1 + 4).

Taking r = 2, s = 1, t = 1 in Theorem 3.1, we obtain the following proposition.

Proposition 3.2. If r = 2, s = 1, t = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 kW−k = 1
9
(− (12n+ 19)W−n−1−(6n+ 11)W−n−2−(3n+ 7)W−n−3+W2+2W1−2W0).

(b)
∑n

k=1 kW−2k = 1
9
(− (3n+ 1)W−2n+1 + (6n+ 1)W−2n −W−2n−1 +W2 −W1 − 2W0).

(c)
∑n

k=1 kW−2k+1 = 1
9
(−W−2n+1 − (3n+ 2)W−2n − (3n+ 1)W−2n−1 +W2 −W1 +W0).

From the last proposition, we have the following corollary which gives sum formulas of Third-order
Pell numbers (take Wn = Pn with P0 = 0, P1 = 1, P2 = 1).

Corollary 3.8. For n ≥ 1, third-order Pell numbers have the following properties:

(a)
∑n

k=1 kP−k = 1
9
(− (12n+ 19)P−n−1 − (6n+ 11)P−n−2 − (3n+ 7)P−n−3 + 4).

(b)
∑n

k=1 kP−2k = 1
9
(− (3n+ 1)P−2n+1 + (6n+ 1)P−2n − P−2n−1 + 1).

(c)
∑n

k=1 kP−2k+1 = 1
9
(−P−2n+1 − (3n+ 2)P−2n − (3n+ 1)P−2n−1 + 1).

Taking Wn = Qn with Q0 = 3, Q1 = 2, Q2 = 6 in the last proposition, we have the following corollary
which presents sum formulas of third-order Pell-Lucas numbers.

Corollary 3.9. For n ≥ 1, third-order Pell-Lucas numbers have the following properties:

(a)
∑n

k=1 kQ−k = 1
9
(− (12n+ 19)Q−n−1 − (6n+ 11)Q−n−2 − (3n+ 7)Q−n−3 + 4).

(b)
∑n

k=1 kQ−2k = 1
9
(− (3n+ 1)Q−2n+1 + (6n+ 1)Q−2n −Q−2n−1 − 2).

(c)
∑n

k=1 kQ−2k+1 = 1
9
(−Q−2n+1 − (3n+ 2)Q−2n − (3n+ 1)Q−2n−1 + 7).

From the last proposition, we have the following corollary which gives sum formulas of third-order
modified Pell numbers (take Wn = En with E0 = 0, E1 = 1, E2 = 1).

Corollary 3.10. For n ≥ 1, third-order modified Pell numbers have the following properties:

(a)
∑n

k=1 kE−k = 1
9
(− (12n+ 19)E−n−1 − (6n+ 11)E−n−2 − (3n+ 7)E−n−3 + 3).

(b)
∑n

k=1 kE−2k = 1
9
(− (3n+ 1)E−2n+1 + (6n+ 1)E−2n − E−2n−1).

(c)
∑n

k=1 kE−2k+1 = 1
9
(−E−2n+1 − (3n+ 2)E−2n − (3n+ 1)E−2n−1).

Taking Wn = Rn with R0 = 3, R1 = 0, R2 = 2 in the last proposition, we have the following corollary
which presents sum formulas of third-order Pell-Perrin numbers.

Corollary 3.11. For n ≥ 1, third-order Pell-Perrin numbers have the following properties:
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(a)
∑n

k=1 kR−k = 1
9
(− (12n+ 19)R−n−1 − (6n+ 11)R−n−2 − (3n+ 7)R−n−3 − 4).

(b)
∑n

k=1 kR−2k = 1
9
(− (3n+ 1)R−2n+1 + (6n+ 1)R−2n −R−2n−1 − 4).

(c)
∑n

k=1 kR−2k+1 = 1
9
(−R−2n+1 − (3n+ 2)R−2n − (3n+ 1)R−2n−1 + 5).

Taking r = 0, s = 1, t = 1 in Theorem 3.1, we obtain the following proposition.

Proposition 3.3. If r = 0, s = 1, t = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 kW−k = − (2n+ 7)W−n−1 − (2n+ 9)W−n−2 − (n+ 5)W−n−3 + 3W2 + 4W1 + 2W0.

(b)
∑n

k=1 kW−2k = − (n+ 1)W−2n+1 −W−2n −W−2n−1 +W2 +W1.

(c)
∑n

k=1 kW−2k+1 = −W−2n+1 − (n+ 2)W−2n − (n+ 1)W−2n−1 +W2 +W1 +W0.

From the last proposition, we have the following corollary which gives sum formulas of Padovan
numbers (take Wn = Pn with P0 = 1, P1 = 1, P2 = 1).

Corollary 3.12. For n ≥ 1, Padovan numbers have the following properties:

(a)
∑n

k=1 kP−k = − (2n+ 7)P−n−1 − (2n+ 9)P−n−2 − (n+ 5)P−n−3 + 9.

(b)
∑n

k=1 kP−2k = − (n+ 1)P−2n+1 − P−2n − P−2n−1 + 2.

(c)
∑n

k=1 kP−2k+1 = −P−2n+1 − (n+ 2)P−2n − (n+ 1)P−2n−1 + 3.

Taking Wn = En with E0 = 3, E1 = 0, E2 = 2 in the last proposition, we have the following corollary
which presents sum formulas of Perrin numbers.

Corollary 3.13. For n ≥ 1, Perrin numbers have the following properties:

(a)
∑n

k=1 kE−k = − (2n+ 7)E−n−1 − (2n+ 9)E−n−2 − (n+ 5)E−n−3 + 12.

(b)
∑n

k=1 kE−2k = − (n+ 1)E−2n+1 − E−2n − E−2n−1 + 2.

(c)
∑n

k=1 kE−2k+1 = −E−2n+1 − (n+ 2)E−2n − (n+ 1)E−2n−1 + 5.

From the last proposition, we have the following corollary which gives sum formulas of Padovan-Perrin
numbers (take Wn = Sn with S0 = 0, S1 = 0, S2 = 1).

Corollary 3.14. For n ≥ 1, Padovan-Perrin numbers have the following properties:

(a)
∑n

k=1 kS−k = − (2n+ 7)S−n−1 − (2n+ 9)S−n−2 − (n+ 5)S−n−3 + 3.

(b)
∑n

k=1 kS−2k = − (n+ 1)S−2n+1 − S−2n − S−2n−1 + 1.

(c)
∑n

k=1 kS−2k+1 = −S−2n+1 − (n+ 2)S−2n − (n+ 1)S−2n−1 + 1.

Taking Wn = An with A0 = 3, A1 = 1, A2 = 3 in the last proposition, we have the following corollary
which presents sum formulas of modified Padovan numbers.

Corollary 3.15. For n ≥ 1, modified Padovan numbers have the following properties:

(a)
∑n

k=1 kA−k = − (2n+ 7)A−n−1 − (2n+ 9)A−n−2 − (n+ 5)A−n−3 + 19.

(b)
∑n

k=1 kA−2k = − (n+ 1)A−2n+1 −A−2n −A−2n−1 + 4.

(c)
∑n

k=1 kA−2k+1 = −A−2n+1 − (n+ 2)A−2n − (n+ 1)A−2n−1 + 7.

Taking r = 0, s = 2, t = 1 in Theorem 3.1, we obtain the following theorem.

Theorem 3.16. If r = 0, s = 2, t = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 kW−k = 1
4
(− (6n+ 13)W−n−1−(6n+ 19)W−n−2−(2n+ 7)W−n−3+3W2+5W1+W0).
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(b)
∑n

k=1 kW−2k = 1
2
(−n (n− 1)W−2n+1 + (n+ 1) (n− 2)W−2n + n (n− 3)W−2n−1 + 2W0).

(c)
∑n

k=1 kW−2k+1 = 1
2
((n+ 1) (n− 2)W−2n+1 − n (n+ 1)W−2n − n (n− 1)W−2n−1 + 2W1).

Proof

(a) If we set r = 0, s = 2, t = 1 in Theorem 3.1 (a) then we have

n∑
k=1

kW−k =
1

4
(− (6n+ 13)W−n−1−(6n+ 19)W−n−2−(2n+ 7)W−n−3+3W2+5W1+W0).

(b) It can be proved by induction.

(c) It can be proved by induction.

From the last theorem, we have the following corollary which gives sum formulas of Pell-Padovan
numbers (take Wn = Rn with R0 = 1, R1 = 1, R2 = 1).

Corollary 3.17. For n ≥ 1, Pell-Padovan numbers have the following properties:

(a)
∑n

k=1 kR−k = 1
4
(− (6n+ 13)R−n−1 − (6n+ 19)R−n−2 − (2n+ 7)R−n−3 + 9).

(b)
∑n

k=1 kR−2k = 1
2
(−n (n− 1)R−2n+1 + (n+ 1) (n− 2)R−2n + n (n− 3)R−2n−1 + 2).

(c)
∑n

k=1 kR−2k+1 = 1
2
((n+ 1) (n− 2)R−2n+1 − n (n+ 1)R−2n − n (n− 1)R−2n−1 + 2).

Taking Wn = Cn with C0 = 3, C1 = 0, C2 = 2 in the last theorem, we have the following corollary
which presents sum formulas of Pell-Perrin numbers.

Corollary 3.18. For n ≥ 1, Pell-Perrin numbers have the following properties:

(a)
∑n

k=1 kC−k = 1
4
(− (6n+ 13)C−n−1 − (6n+ 19)C−n−2 − (2n+ 7)C−n−3 + 9).

(b)
∑n

k=1 kC−2k = 1
2
(−n (n− 1)C−2n+1 + (n+ 1) (n− 2)C−2n + n (n− 3)C−2n−1 + 6).

(c)
∑n

k=1 kC−2k+1 = 1
2
((n+ 1) (n− 2)C−2n+1 − n (n+ 1)C−2n − n (n− 1)C−2n−1).

From the last theorem, we have the following corollary which gives sum formulas of third order
Fibonacci-Pell numbers (take Wn = Gn with G0 = 1, G1 = 0, G2 = 2).

Corollary 3.19. For n ≥ 1, third order Fibonacci-Pell numbers have the following properties:

(a)
∑n

k=1 kG−k = 1
4
(− (6n+ 13)G−n−1 − (6n+ 19)G−n−2 − (2n+ 7)G−n−3 + 7).

(b)
∑n

k=1 kG−2k = 1
2
(−n (n− 1)G−2n+1 + (n+ 1) (n− 2)G−2n + n (n− 3)G−2n−1 + 2).

(c)
∑n

k=1 kG−2k+1 = 1
2
((n+ 1) (n− 2)G−2n+1 − n (n+ 1)G−2n − n (n− 1)G−2n−1).

Taking Wn = Bn with B0 = 3, B1 = 0, B2 = 4 in the last theorem, we have the following corollary
which presents sum formulas of third order Lucas-Pell numbers.

Corollary 3.20. For n ≥ 1, third order Lucas-Pell numbers have the following properties:

(a)
∑n

k=1 kB−k = 1
4
(− (6n+ 13)B−n−1 − (6n+ 19)B−n−2 − (2n+ 7)B−n−3 + 15).

(b)
∑n

k=1 kB−2k = 1
2
(−n (n− 1)B−2n+1 + (n+ 1) (n− 2)B−2n + n (n− 3)B−2n−1 + 6).

(c)
∑n

k=1 kB−2k+1 = 1
2
((n+ 1) (n− 2)B−2n+1 − n (n+ 1)B−2n − n (n− 1)B−2n−1).

Taking r = 0, s = 1, t = 2 in Theorem 3.1, we obtain the following proposition.

Proposition 3.4. If r = 0, s = 1, t = 2 then for n ≥ 1 we have the following formulas:
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(a)
∑n

k=1 kW−k = 1
2
(− (3n+ 7)W−n−1−(3n+ 10)W−n−2−2 (n+ 4)W−n−3+2W2+3W1+2W0).

(b)
∑n

k=1 kW−2k = 1
4
(−2 (n+ 1)W−2n+1 −W−2n − 2W−2n−1 +W2 + 2W1).

(c)
∑n

k=1 kW−2k+1 = 1
4
(−W−2n+1 − 2 (n+ 2)W−2n − 4 (n+ 1)W−2n−1 + 2W2 +W1 + 2W0).

From the last proposition, we have the following corollary which gives sum formulas of Jacobsthal-
Padovan numbers (take Wn = Qn with Q0 = 1, Q1 = 1, Q2 = 1).

Corollary 3.21. For n ≥ 1, Jacobsthal-Padovan numbers have the following properties:

(a)
∑n

k=1 kQ−k = 1
2
(− (3n+ 7)Q−n−1 − (3n+ 10)Q−n−2 − 2 (n+ 4)Q−n−3 + 7).

(b)
∑n

k=1 kQ−2k = 1
4
(−2 (n+ 1)Q−2n+1 −Q−2n − 2Q−2n−1 + 3).

(c)
∑n

k=1 kQ−2k+1 = 1
4
(−Q−2n+1 − 2 (n+ 2)Q−2n − 4 (n+ 1)Q−2n−1 + 5).

Taking Wn = Ln with L0 = 3, L1 = 0, L2 = 2 in the last proposition, we have the following corollary
which presents sum formulas of Jacobsthal-Perrin numbers.

Corollary 3.22. For n ≥ 1, Jacobsthal-Perrin numbers have the following properties:

(a)
∑n

k=1 kL−k = 1
2
(− (3n+ 7)L−n−1 − (3n+ 10)L−n−2 − 2 (n+ 4)L−n−3 + 10).

(b)
∑n

k=1 kL−2k = 1
4
(−2 (n+ 1)L−2n+1 − L−2n − 2L−2n−1 + 2).

(c)
∑n

k=1 kL−2k+1 = 1
4
(−L−2n+1 − 2 (n+ 2)L−2n − 4 (n+ 1)L−2n−1 + 10).

From the last proposition, we have the following corollary which gives sum formulas of adjusted
Jacobsthal-Padovan numbers (take Wn = Kn with K0 = 0,K1 = 1,K2 = 0).

Corollary 3.23. For n ≥ 1, adjusted Jacobsthal-Padovan numbers have the following properties:

(a)
∑n

k=1 kK−k = 1
2
(− (3n+ 7)K−n−1 − (3n+ 10)K−n−2 − 2 (n+ 4)K−n−3 + 3).

(b)
∑n

k=1 kK−2k = 1
4
(−2 (n+ 1)K−2n+1 −K−2n − 2K−2n−1 + 2).

(c)
∑n

k=1 kK−2k+1 = 1
4
(−K−2n+1 − 2 (n+ 2)K−2n − 4 (n+ 1)K−2n−1 + 1).

Taking Wn = Mn with M0 = 3,M1 = 1,M2 = 3 in the last proposition, we have the following corollary
which presents sum formulas of modified Jacobsthal-Padovan numbers.

Corollary 3.24. For n ≥ 1, modified Jacobsthal-Padovan numbers have the following properties:

(a)
∑n

k=1 kM−k = 1
2
(− (3n+ 7)M−n−1 − (3n+ 10)M−n−2 − 2 (n+ 4)M−n−3 + 15).

(b)
∑n

k=1 kM−2k = 1
4
(−2 (n+ 1)M−2n+1 −M−2n − 2M−2n−1 + 5).

(c)
∑n

k=1 kM−2k+1 = 1
4
(−M−2n+1 − 2 (n+ 2)M−2n − 4 (n+ 1)M−2n−1 + 13).

Taking r = 1, s = 0, t = 1 in Theorem 3.1, we obtain the following proposition.

Proposition 3.5. If r = 1, s = 0, t = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 kW−k = − (2n+ 6)W−n−1 − (n+ 3)W−n−2 − (n+ 4)W−n−3 + 2W2 +W1 +W0.

(b)
∑n

k=1 kW−2k = 1
9
(− (6n+ 7)W−2n+1 +(3n− 1)W−2n − (3n+ 5)W−2n−1 +5W2 +2W1 +W0).

(c)
∑n

k=1 kW−2k+1 = 1
9
(− (3n+ 8)W−2n+1−(3n+ 5)W−2n−(6n+ 7)W−2n−1+7W2+W1+5W0).

From the last proposition, we have the following corollary which gives sum formulas of Narayana
numbers (take Wn = Nn with N0 = 0, N1 = 1, N2 = 1).

Corollary 3.25. For n ≥ 1, Narayana numbers have the following properties:
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(a)
∑n

k=1 kN−k = − (2n+ 6)N−n−1 − (n+ 3)N−n−2 − (n+ 4)N−n−3 + 3.

(b)
∑n

k=1 kN−2k = 1
9
(− (6n+ 7)N−2n+1 + (3n− 1)N−2n − (3n+ 5)N−2n−1 + 7).

(c)
∑n

k=1 kN−2k+1 = 1
9
(− (3n+ 8)N−2n+1 − (3n+ 5)N−2n − (6n+ 7)N−2n−1 + 8).

Taking Wn = Un with U0 = 3, U1 = 1, U2 = 1 in the last proposition, we have the following corollary
which presents sum formulas of Narayana-Lucas numbers.

Corollary 3.26. For n ≥ 1, Narayana-Lucas numbers have the following properties:

(a)
∑n

k=1 kU−k = − (2n+ 6)U−n−1 − (n+ 3)U−n−2 − (n+ 4)U−n−3 + 6.

(b)
∑n

k=1 kU−2k = 1
9
(− (6n+ 7)U−2n+1 + (3n− 1)U−2n − (3n+ 5)U−2n−1 + 10).

(c)
∑n

k=1 kU−2k+1 = 1
9
(− (3n+ 8)U−2n+1 − (3n+ 5)U−2n − (6n+ 7)U−2n−1 + 23).

From the last proposition, we have the following corollary which gives sum formulas of Narayana-
Perrin numbers (take Wn = Hn with H0 = 3, H1 = 0, H2 = 2).

Corollary 3.27. For n ≥ 1, Narayana-Perrin numbers have the following properties:

(a)
∑n

k=1 kH−k = − (2n+ 6)H−n−1 − (n+ 3)H−n−2 − (n+ 4)H−n−3 + 7.

(b)
∑n

k=1 kH−2k = 1
9
(− (6n+ 7)H−2n+1 + (3n− 1)H−2n − (3n+ 5)H−2n−1 + 13).

(c)
∑n

k=1 kH−2k+1 = 1
9
(− (3n+ 8)H−2n+1 − (3n+ 5)H−2n − (6n+ 7)H−2n−1 + 29).

Taking r = 1, s = 1, t = 2 in Theorem 3.1, we obtain the following proposition.

Proposition 3.6. If r = 1, s = 1, t = 2 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 kW−k = 1
3
(− (4n+ 7)W−n−1 − (3n+ 7)W−n−2 − 2 (n+ 3)W−n−3 +W2 +W1)

(b)
∑n

k=1 kW−2k = 1
9
(− (3n+ 2)W−2n+1 + (3n+ 1)W−2n − 2W−2n−1 +W2 +W1 − 2W0)

(c)
∑n

k=1 kW−2k+1 = 1
9
(−W−2n+1 − (3n+ 4)W−2n − 2 (3n+ 2)W−2n−1 + 2W2 −W1 + 2W0)

From the last proposition, we have the following corollary which gives sum formulas of third order
Jacobsthal numbers (take Wn = Jn with J0 = 0, J1 = 1, J2 = 1).

Corollary 3.28. For n ≥ 1, third order Jacobsthal numbers have the following properties:

(a)
∑n

k=1 kJ−k = 1
3
(− (4n+ 7) J−n−1 − (3n+ 7) J−n−2 − 2 (n+ 3) J−n−3 + 2).

(b)
∑n

k=1 kJ−2k = 1
9
(− (3n+ 2) J−2n+1 + (3n+ 1) J−2n − 2J−2n−1 + 2).

(c)
∑n

k=1 kJ−2k+1 = 1
9
(−J−2n+1 − (3n+ 4) J−2n − 2 (3n+ 2) J−2n−1 + 1).

Taking Wn = jn with j0 = 2, j1 = 1, j2 = 5 in the last proposition, we have the following corollary
which presents sum formulas of third order Jacobsthal-Lucas numbers.

Corollary 3.29. For n ≥ 1, third order Jacobsthal-Lucas numbers have the following properties:

(a)
∑n

k=1 kj−k = 1
3
(− (4n+ 7) j−n−1 − (3n+ 7) j−n−2 − 2 (n+ 3) j−n−3 + 6).

(b)
∑n

k=1 kj−2k = 1
9
(− (3n+ 2) j−2n+1 + (3n+ 1) j−2n − 2j−2n−1 + 2).

(c)
∑n

k=1 kj−2k+1 = 1
9
(−j−2n+1 − (3n+ 4) j−2n − 2 (3n+ 2) j−2n−1 + 13).

From the last proposition, we have the following corollary which gives sum formulas of modified third
order Jacobsthal-Lucas numbers (take Wn = Kn with K0 = 3,K1 = 1,K2 = 3).

Corollary 3.30. For n ≥ 1, modified third order Jacobsthal-Lucas numbers have the following properties:
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(a)
∑n

k=1 kK−k = 1
3
(− (4n+ 7)K−n−1 − (3n+ 7)K−n−2 − 2 (n+ 3)K−n−3 + 4).

(b)
∑n

k=1 kK−2k = 1
9
(− (3n+ 2)K−2n+1 + (3n+ 1)K−2n − 2K−2n−1 − 2).

(c)
∑n

k=1 kK−2k+1 = 1
9
(−K−2n+1 − (3n+ 4)K−2n − 2 (3n+ 2)K−2n−1 + 11).

Taking Wn = Qn with Q0 = 3, Q1 = 0, Q2 = 2 in the last proposition, we have the following corollary
which presents sum formulas of third order Jacobsthal-Perrin numbers.

Corollary 3.31. For n ≥ 1, third order Jacobsthal-Perrin numbers have the following properties:

(a)
∑n

k=1 kQ−k = 1
3
(− (4n+ 7)Q−n−1 − (3n+ 7)Q−n−2 − 2 (n+ 3)Q−n−3 + 2).

(b)
∑n

k=1 kQ−2k = 1
9
(− (3n+ 2)Q−2n+1 + (3n+ 1)Q−2n − 2Q−2n−1 − 4).

(c)
∑n

k=1 kQ−2k+1 = 1
9
(−Q−2n+1 − (3n+ 4)Q−2n − 2 (3n+ 2)Q−2n−1 + 10).

Taking r = 2, s = 3, t = 5 in Theorem 3.1, we obtain the following proposition.

Proposition 3.7. If r = 2, s = 3, t = 5 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 kW−k = 1
81
(− (90n+ 113)W−n−1 − (72n+ 139)W−n−2 − 5 (9n+ 23)W−n−3 + 5W2 +

4W1 − 20W0).

(b)
∑n

k=1 kW−2k = 1
2025

(− (315n+ 209)W−2n+1 + (720n+ 497)W−2n + 5 (90n− 11)W−2n−1 +
11W2 + 187W1 − 530W0).

(c)
∑n

k=1 kW−2k+1 = 1
2025

((90n+ 79)W−2n+1 − 11 (45n+ 62)W−2n − 5 (315n+ 209)W−2n−1 +
209W2 − 497W1 + 55W0).

From the last proposition, we have the following corollary which gives sum formulas of 3-primes
numbers (take Wn = Gn with G0 = 0, G1 = 1, G2 = 2).

Corollary 3.32. For n ≥ 1, 3-primes numbers have the following properties:

(a)
∑n

k=1 kG−k = 1
81
(− (90n+ 113)G−n−1 − (72n+ 139)G−n−2 − 5 (9n+ 23)G−n−3 + 14).

(b)
∑n

k=1 kG−2k = 1
2025

(− (315n+ 209)G−2n+1+(720n+ 497)G−2n+5 (90n− 11)G−2n−1+209).

(c)
∑n

k=1 kG−2k+1 = 1
2025

((90n+ 79)G−2n+1 − 11 (45n+ 62)G−2n − 5 (315n+ 209)G−2n−1 − 79).

Taking Wn = Hn with H0 = 3,H1 = 2, H2 = 10 in the last proposition, we have the following corollary
which presents sum formulas of Lucas 3-primes numbers.

Corollary 3.33. For n ≥ 1, Lucas 3-primes numbers have the following properties:

(a)
∑n

k=1 kH−k = 1
81
(− (90n+ 113)H−n−1 − (72n+ 139)H−n−2 − 5 (9n+ 23)H−n−3 − 2).

(b)
∑n

k=1 kH−2k = 1
2025

(− (315n+ 209)H−2n+1+(720n+ 497)H−2n+5 (90n− 11)H−2n−1−1106).

(c)
∑n

k=1 kH−2k+1 = 1
2025

((90n+ 79)H−2n+1 − 11 (45n+ 62)H−2n − 5 (315n+ 209)H−2n−1 +
1261).

From the last proposition, we have the following corollary which gives sum formulas of modified 3-
primes numbers (take Wn = En with E0 = 0, E1 = 1, E2 = 1).

Corollary 3.34. For n ≥ 1, modified 3-primes numbers have the following properties:

(a)
∑n

k=1 kE−k = 1
81
(− (90n+ 113)E−n−1 − (72n+ 139)E−n−2 − 5 (9n+ 23)E−n−3 + 9).

(b)
∑n

k=1 kE−2k = 1
2025

(− (315n+ 209)E−2n+1+(720n+ 497)E−2n+5 (90n− 11)E−2n−1+198).

(c)
∑n

k=1 kE−2k+1 = 1
2025

((90n+ 79)E−2n+1−11 (45n+ 62)E−2n−5 (315n+ 209)E−2n−1−288).
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Taking r = 5, s = 3, t = 2 in Theorem 3.1, we obtain the following proposition.

Proposition 3.8. If r = 5, s = 3, t = 2 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 kW−k = 1
81
(− (90n+ 107)W−n−1−(45n+ 67)W−n−2−2 (9n+ 17)W−n−3−W2+13W1−

20W0).

(b)
∑n

k=1 kW−2k = 1
405

(− (63n+ 10)W−2n+1+(333n+ 49)W−2n+2 (18n− 19)W−2n−1+19W2−
85W1 − 106W0).

(c)
∑n

k=1 kW−2k+1 = 1
405

((18n− 1)W−2n+1 − 17 (9n+ 4)W−2n − 2 (63n+ 10)W−2n−1 + 10W2 −
49W1 + 38W0).

From the last proposition, we have the following corollary which gives sum formulas of reverse 3-
primes numbers (take Wn = Nn with N0 = 0, N1 = 1, N2 = 5).

Corollary 3.35. For n ≥ 1, reverse 3-primes numbers have the following properties:

(a)
∑n

k=1 kN−k = 1
81
(− (90n+ 107)N−n−1 − (45n+ 67)N−n−2 − 2 (9n+ 17)N−n−3 + 8).

(b)
∑n

k=1 kN−2k = 1
405

(− (63n+ 10)N−2n+1 + (333n+ 49)N−2n + 2 (18n− 19)N−2n−1 + 10).

(c)
∑n

k=1 kN−2k+1 = 1
405

((18n− 1)N−2n+1 − 17 (9n+ 4)N−2n − 2 (63n+ 10)N−2n−1 + 1).

Taking Wn = Sn with S0 = 3, S1 = 5, S2 = 31 in the last proposition, we have the following corollary
which presents sum formulas of reverse Lucas 3-primes numbers.

Corollary 3.36. For n ≥ 1, reverse Lucas 3-primes numbers have the following properties:

(a)
∑n

k=1 kS−k = 1
81
(− (90n+ 107)S−n−1 − (45n+ 67)S−n−2 − 2 (9n+ 17)S−n−3 − 26).

(b)
∑n

k=1 kS−2k = 1
405

(− (63n+ 10)S−2n+1 + (333n+ 49)S−2n + 2 (18n− 19)S−2n−1 − 154).

(c)
∑n

k=1 kS−2k+1 = 1
405

((18n− 1)S−2n+1 − 17 (9n+ 4)S−2n − 2 (63n+ 10)S−2n−1 + 179).

From the last proposition, we have the following corollary which gives sum formulas of reverse
modified 3-primes numbers (take Wn = Un with U0 = 0, U1 = 1, U2 = 4).

Corollary 3.37. For n ≥ 1, reverse modified 3-primes numbers have the following properties:

(a)
∑n

k=1 kU−k = 1
81
(− (90n+ 107)U−n−1 − (45n+ 67)U−n−2 − 2 (9n+ 17)U−n−3 + 9).

(b)
∑n

k=1 kU−2k = 1
405

(− (63n+ 10)U−2n+1 + (333n+ 49)U−2n + 2 (18n− 19)U−2n−1 − 9).

(c)
∑n

k=1 kU−2k+1 = 1
405

((18n− 1)U−2n+1 − 17 (9n+ 4)U−2n − 2 (63n+ 10)U−2n−1 − 9).

4 CONCLUSION

In this work, a number of sum identities were
discovered and proved. The method used in
this paper can be used for the other linear
recurrence sequences, too. We have written sum
identities in terms of the generalized Tribonacci
sequence, and then we have presented the
formulas as special cases the corresponding
identity for the special cases of the generalized
Tribonacci sequences. All the listed identities
may be proved by induction, but that method of
proof gives no clue about their discovery. We

give the proofs to indicate how these identities,
in general, were discovered.
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