

International Research Journal of Pure & Applied Chemistry

22(6): 1-7, 2021; Article no.IRJPAC.71174 ISSN: 2231-3443, NLM ID: 101647669

# Speciation of Manganese in Natural Waters Using Differential Pulse Stripping Voltammetry in Correlation with Physico-chemical Parameters

# Indira Šestan<sup>1\*</sup>, Amra Odobašić<sup>1</sup>, Almir Šestan<sup>2</sup>, Amra Bratovčić<sup>1</sup> and Melisa Ahmetović<sup>1</sup>

<sup>1</sup>Department of Physical Chemistry and Electrochemistry, Faculty of Technology, University of Tuzla, Tuzla, Bosnia and Herzegovina. <sup>2</sup>Department of General and Inorganic Chemistry, Faculty of Natural Science and Mathematic, University of Tuzla, Tuzla, Bosnia and Herzegovina.

### Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

#### Article Information

DOI: 10.9734/IRJPAC/2021/v22i630411 <u>Editor(s):</u> (1) Prof. Wolfgang Linert, Vienna University of Technology, Austria. <u>Reviewers:</u> (1) Nannapaneni Madhavi, Acharya Nagarjuna University, India. (2) Pinky Abraham, St. Gregorios College, India. Complete Peer review History: <u>https://www.sdiarticle4.com/review-history/71174</u>

**Original Research Article** 

Received 05 May 2021 Accepted 15 July 2021 Published 17 July 2021

## ABSTRACT

To understand the bio-geochemical distribution, activities and environmental consequences of heavy metals, it is very important to know their physico-chemical form and the conditions under which the transformation from one form to another occurs. The bioavailability of heavy metals directly depends on the physico-chemical conditions of the environment, the concentration of anions and cations in water, the content of heavy metals as well as the ionic strength. Depending on the physico-chemical properties of water, metals are found in water as free ions or as complex compounds. Their change in the form in which metals occur is significantly influenced by pH, temperature, alkalinity, water hardness, organic matter, and biological activity. The total concentration of metal in water is only an indicator of pollution, and it is necessary to determine the form of the metal. Differential Pulse Anode Stripping Voltammery with mercury electrode was used for determination of chemical speciation. Manganese belongs to the group of essential heavy metals if its concentration does not exceed the maximum allowed value.

\*Corresponding author: E-mail: indira.sestan@gmail.com, indira.sestan@untz.ba;

The aim of this work is to determine the available forms of manganese in the water of Modrac Lake in relation to the analyzed physico-chemical parameters. In addition to industrial applications, Modrac Lake is also used as an alternative source of drinking water, and it is a strategic resource for water supply of the region of north-eastern Bosnia.

Keywords: Manganese; physico-chemical parameters; differential pulse stripping voltammetry.

## **1. INTRODUCTION**

Natural waters and their particulate matter form a complex heterogeneous electrolytic system which contains numerous inorganic and organic species distributed between the liquid and solid phases. Traces of metals entering natural waters become part of this system, and their distribution between the solid and liquid phases is controlled by few types of dynamic set of physico-chemical interactions and equilibria [1]. The problem of natural water quality is mainly caused of iron, manganese, hydrogen sulphide and hardness [2].

Heavy metals enter water systems from natural and anthropogenic sources [3,4,5]. In water, as sparingly soluble, carbonates, sulphides or sulphates residue at the bottom of water surfaces. Sediment pollution is different from water pollution, because due to its geogenic origin, heavy metals exist in sediment for much longer than in other parts of the biosphere [6]. When the adsorption capacity of the sediment is depleted, the concentration of metal ions in the water increases [7]. The mobility of heavy metals in water depends on a number of factors, and especially on the pH value of water, the present hydrated forms of Mn and Fe, the concentration of carbonates and phosphates and the content of organic matter. With increased acidity of the area and redox potential, some metals such as Cu and Pb are mobilized, and Mn and Fe hydroxides are mobilized under reducing conditions [8]. Manganese ingested can cause harmful effects on human health, and scientific researchers indicate that the intake of higher concentrations of manganese can damage the neurological system [9]. In addition, the presence of manganese in water in large quantities disrupts the organoleptic properties of water, causing an unpleasant taste of water, and is deposited on water pipes, which allows the growth and development of bacteria [10]. The prevalence of each species of manganese depends on the pH, redox potential (Eh) and temperature. Manganese is present in divalent form when the Eh value of surface waters range between 0.5

and 1.0 V and manganese is largely soluble when pH value is close to 8.0. Keeping the Eh conditions and increasing the pH, manganese appears in the form of low-solubility oxides and hydroxides. Thus, an increased pH or Eh would be more favorable for the removal of manganese. As it is more stable in the reduced form than iron, manganese oxidation is more difficult, and simple aeration is generally insufficient for its removal. Additionally, it may be chelated by organic matter. Although this does not affect substantially the removal mechanisms, it can result in the formation of by-products when pre-disinfection is performed with chlorine compounds. The relevance of Mn is evidenced by the successive monitoring of water quality performed in Minas Gerais state (Brazil), which shows this metal to be the second most frequent parameter of violation for the streams of classes 1 and 2, for which the maximum allowable concentration of 0.10 mg L<sup>-1</sup> coincides with the provisions of the Brazilian Water Quality Standards [2]. Given the pH value and redox potential, manganese can occur in water in three oxidation states (Mn<sup>2+</sup>, Mn<sup>3+</sup>& Mn<sup>4+</sup>). Manganese in the oxidized form of MnO2 in water occurs when the oxygen concentration in water is elevated and such a form of manganese is insoluble and its concentration in water is low. The most dominant form of manganese is Mn<sup>2+</sup> which is formed under reductive conditions, while the most unstable form is Mn<sup>3+</sup> [11]. Removal of manganese from water is carried out by oxidation when Mn<sup>2+</sup> is oxidized to Mn<sup>4+</sup> and precipitated in the form of manganese dioxide. In order to oxidize manganese, KMnO<sub>4</sub>, chlorine or chlorinebased preparations are dosed into the water [12]. The determination of heavy metals has great attention. Considering very low concentrations of manganese and iron in natural water samples, sensitive analytical techniques are required in order to detect them [13]. Various spectroscopic techniques are nowadays widely used for manganese determination; however, the electroanalytical techniques remain to be interesting alternatives due to their high sensitivity, easy procedures and low cost. Anodic stripping voltammetry (ASV) with mercury electrodes

has been emploved for manganese determination in the eighties [14,15]. Due to the low solubility in mercury and guite a negative deposition potential of manganese, the cathodic stripping techniques usina the accumulation of the analyte by oxidation of Mn<sup>2+</sup> ions to MnO<sub>2</sub> at non-mercury solid electrodes have been developed [15-18].

#### 2. MATERIAL AND METHODS

Water samples for chemical analysis and analysis for manganese content were collected in sterile plastic bottles with a volume of 0.33 L. Three samples were taken from each locality.

The first sample was immediately acidified with concentrated  $HNO_3$  p.a., and was used for analysis of total heavy metals. The second sample taken for chemical analysis was preserved according to standard procedures, while the third sample was frozen at -40°C and stored for further analysis for determination of chemical speciation. Water samples from the Modrac Lake accumulation were taken from four different localities over four seasons from a depth of 2.5 m.

- Locality 1 dam area of Modrac Lake
- Locality 2 the middle part of the Modrac Lake
- Locality 3 the mouth of the Turija River into Modrac Lake
- Locality 4 the mouth of the Spreča River into Modrac Lake

Analytical methods of spectrophotometry and volumetry were applied to determine the physicochemical composition of the water in the Modrac Lake accumulation. An electrochemical method (differential pulse voltammetry) was used to determine the total concentration of magnesium in water samples. The use of electrochemical methods was performed using pthe method of standard addition which is a quantitative analysis technique used to minimize matrix effects that interfere with analyte measurement signals. This method is suitable for determining low concentrations of trace elements in small sample volumes. Differential pulse anodic and cathodic stripping voltammetry (DPASV and DPCSV) were used for chemical speciation. The analysis process using DPASV and DPCSV was performed in an electroanalytical cell with a volume of 10 ml with immersed three electrodes in the test sample. An electroanalytical cell, Princenton Applied Research model 303A, equipped a three-electrode system, as follows:

- Working electrodes, hanging mercury drop (HMDE)
- Reference electrodes, Ag/AgCl with constant potential and
- Auxiliary electrodes, Pt

During the experimental work, nitrogen was used as an inert gas of high purity, which was used to remove oxygen that can cause interference by reducing sensitivity and reproducibility.

In the preparation process of samples for chemical analysis as well as for analysis of manganese content, a standard solution of Mn with a concentration of 1 g/L was used, from which primary working solutions were prepared, then concentrated HNO<sub>3</sub>, NaOH, KNO<sub>3</sub> p.a. from which 0.1M KNO3 and 0.01M KNO3 were prepared. Glassware and used electroanalytical cells were kept in 6 M HNO<sub>3</sub> for 24 h before use, after which they were rinsed with distilled water and dried in an oven. A potentiostat/galvanostat, PAR, model 303A, with Model 270/250 Research Electrochemistry Software, version 4.3 was used determine the heavy metal content. to Photometer and UV-VIS Spectrophotometer, Perkin Elmer Lambda 25 were used for chemical analysis. Chloride content was determined by the method. and physico-chemical Moore parameters such as temperature, pH value, dissolved oxygen, redox potential, conductivity, total salt content in the water were determined by direct measurement using HAANA multiparameters (pH, ISE, EC, DO & turbidity).

#### 3. RESULTS AND DISCUSSION

In the first phase of the experimental work, the physico-chemical composition of the water was determined through the seasons for all the mentioned localities. The results of these analyzes are presented in the Tables 1 to 4.

#### 3.1 Results of Water Samples Analysis for Free/labile Metal Ion and Metal Ion Bounded to Organic Complexes

In the first phase, after performed chemical analysis, the concentration of metal that was bounded to a labile organic complex at different localities depending on the season was determined. Water samples stored at -40 ° C were first defrosted, then filtered through 0.45  $\mu$ m porous filter paper to remove colloidal particles present in the water. After filtration, the water samples were acidified with HCl to pH 2 and irradiated in a UV sterilizer

"SPECTROLINKER XL-1500 UV CROSS LINKER" of 100 W for three hours. By the process of radiation, metals that have been bounded to an organic complex with organic matter present in water are released. In this way were determined an inert form of the metal which is the least toxic (metal which was bounded to stable complexes).

The Table 5 provides the results calculated for the free/labile metal ions bounded to organic complexes obtained by the DPSV method using the stated deposition potentials.

The inorganic speciation of the analyzed samples on the manganese content in water was performed using the VISUAL MINTEQ program taking into account the temperature, pH value and chemical composition of the water. The results are presented in Tables 7, 8. Two seasons were selected to show the results where the greatest difference was observed.

An increased amount of manganese the form of  $Mn^{2+}$  were noticeable in the spring and summer period when the water temperatures were quite high. There was a decrease in redox potential and pH value, and the concentration of dissolved oxygen was much lower compared to winter-autumn period. Under these conditions, faster oxidation of manganese from reducing sediments occurs, which increases the concentration of  $Mn^{2+}$  in water, and thus the toxicity. From the Fig. 1 it can be seen that almost all manganese is in the form of the free ion  $Mn^{2+}$  in the summer. By increasing the pH value, i.e. by creating oxidation conditions, manganese turns into an insoluble metal form of oxide or oxyhydrate.

| Table 1. | <b>Physico-chemical</b> | parameters - | autumn period |
|----------|-------------------------|--------------|---------------|
|          |                         |              |               |

| Physico-chemical parameter  | S     |       | LOCALITY |       |
|-----------------------------|-------|-------|----------|-------|
|                             | 1     | 2     | 3        | 4     |
| Temperature [°C]            | 6.78  | 6.26  | 4.63     | 4.66  |
| pH – value                  | 7.91  | 8.26  | 8.44     | 8.59  |
| Dissolved oxygen [mg/L]     | 4.55  | 4.78  | 7.73     | 5.9   |
| Oxydo-reduction potential   | 84.1  | 230   | 46.6     | 55.7  |
| Pressure [kPa]              | 96.53 | 96.37 | 96.33    | 95.32 |
| Conductivity [µS/cm]        | 410   | 424   | 428      | 465   |
| Total dissolved solid [ppm] | 205   | 212   | 214      | 233   |
| Sulfates [mg/L]             | 62    | 130.1 | 83       | 199   |
| Phosphates [mg/L]           | 1.1   | 1.55  | 1.3      | 3.5   |
| Chlorides [mg/L]            | 14    | 11    | 11       | 9     |
| Organic matter [mg/L]       | 33.1  | 44.4  | 30.8     | 27.9  |
| Ionic strength [mol/L]      | 0.047 | 0.028 | 0.049    | 0.029 |

Table 2. Physico-chemical parameters - winter period

| Physico-chemical parameter  | S     |        | Locality |       |
|-----------------------------|-------|--------|----------|-------|
|                             | 1     | 2      | 3        | 4     |
| Temperature [°C]            | 7.08  | 7.59   | 8.45     | 7.5   |
| pH – value                  | 8.01  | 8.25   | 8.22     | 8     |
| Dissolved oxygen [mg/L]     | 0.2   | 0.57   | 1.17     | 0.5   |
| Oxydo-reduction potential   | 256.4 | 121.7  | 146.5    | 140   |
| Pressure [kPa]              | 98.46 | 98.39  | 98.4     | 99.2  |
| Conductivity [µS/cm]        | 325   | 322    | 339      | 400   |
| Total dissolved solid [ppm] | 163   | 161    | 170      | 160   |
| Sulfates [mg/L]             | 282.2 | 146.85 | 137.71   | 84.85 |
| Phosphates [mg/L]           | 1.089 | 1.180  | 0.907    | 3.00  |
| Chlorides [mg/L]            | 31.49 | 16.99  | 13.99    | 18.99 |
| Organic matter [mg/L]       | 41.09 | 22.75  | 43.46    | 17.7  |
| Ionic strength [mol/L]      | 0.053 | 0.0303 | 0.054    | 0.044 |

| Physico-chemical parameter  | 'S     |        | Locality |        |
|-----------------------------|--------|--------|----------|--------|
|                             | 1      | 2      | 3        | 4      |
| Temperature [°C]            | 30.0   | 30.23  | 30.41    | 29.54  |
| pH – value                  | 8.1    | 8.11   | 8.2      | 7.18   |
| Dissolved oxygen [mg/L]     | 0.3    | 0.38   | 0.4      | 0.16   |
| Oxydo-reduction potential   | 123.6  | 121.7  | 122      | 154.6  |
| Pressure [kPa]              | 97.49  | 97.43  | 97.41    | 97.59  |
| Conductivity [µS/cm]        | 359    | 363    | 360      | 970    |
| Total dissolved solid [ppm] | 179    | 181    | 180      | 170    |
| Sulfates [mg/L]             | 61.71  | 127.71 | 273      | 81.7   |
| Phosphates [mg/L]           | 1.134  | 1.61   | 1.31     | 3.63   |
| Chlorides [mg/L]            | 14.99  | 11.49  | 11.5     | 8.99   |
| Organic matter [mg/L]       | 35.08  | 47.412 | 31.608   | 38.44  |
| Ionic strength [mol/L]      | 0.0275 | 0.0318 | 0.028    | 0.0432 |

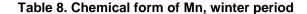
| Table 3. Physico-chemica | I parameters - summer period |
|--------------------------|------------------------------|
|                          |                              |

Table 4. Physico-chemical parameters - spring period

| Physico-chemical parameters |        |        | Locality |        |
|-----------------------------|--------|--------|----------|--------|
|                             | 1      | 2      | 3        | 4      |
| Temperature [°C]            | 24.78  | 23.59  | 23.65    | 23     |
| pH – value                  | 8.08   | 8.25   | 8.05     | 7.8    |
| Dissolved oxygen [mg/L]     | 0.38   | 1.5    | 1.1      | 0.9    |
| Oxydo-reduction potential   | 217.5  | 175.8  | 146.6    | 160    |
| Pressure [kPa]              | 97.34  | 97.37  | 97.26    | 97     |
| Conductivity [µS/cm]        | 385    | 369    | 381      | 400    |
| Total dissolved solid [ppm] | 192    | 185    | 190      | 160    |
| Sulfates [mg/L]             | 69.85  | 85     | 51       | 241    |
| Phosphates [mg/L]           | 1.49   | 1.92   | 1.47     | 1.88   |
| Chlorides [mg/L]            | 13.9   | 9.49   | 14.99    | 16.99  |
| Organic matter [mg/L]       | 23.706 | 20.54  | 26.23    | 8.21   |
| Ionic strength [mol/L]      | 0.0169 | 0.0215 | 0.0245   | 0.0455 |

## Table 5. Deposition potential of Mn

| Metal | Initial potential (mV) | Final potential mV) |
|-------|------------------------|---------------------|
| Mn    | -1.65                  | -1.25               |


| Table 6. Physico-chemical para | ameters - spring period |
|--------------------------------|-------------------------|
|--------------------------------|-------------------------|

| ca       | Sprin               | ig (mg/l)           | Summ                | er (mg/l)           | Autum                 | n (mg/l)            | Winte                | er (mg/l)           |
|----------|---------------------|---------------------|---------------------|---------------------|-----------------------|---------------------|----------------------|---------------------|
| = د<br>ل | *b.r.               | **a.r.              | *b.r.               | **a.r.              | *b.r.                 | **a.r.              | *b.r.                | **a.r.              |
| 1        | 42·10 <sup>-3</sup> | 33·10 <sup>-2</sup> | 95·10 <sup>-3</sup> | 10·10 <sup>-2</sup> | 70·10 <sup>-3</sup>   | 10·10 <sup>-2</sup> | 7.8·10 <sup>-3</sup> | 19·10 <sup>-3</sup> |
| 2        | 3·10 <sup>-4</sup>  | 47·10 <sup>-3</sup> | 36·10 <sup>-3</sup> | 45·10 <sup>-3</sup> | 6.9 ·10 <sup>-3</sup> | 80·10 <sup>-3</sup> | 4.9·10 <sup>-3</sup> | 46·10 <sup>-3</sup> |
| 3        | 5·10 <sup>-4</sup>  | 12·10 <sup>-2</sup> | 38·10 <sup>-3</sup> | 1·10 <sup>-2</sup>  | 44·10 <sup>-3</sup>   | 27·10 <sup>-3</sup> | 5·10 <sup>-4</sup>   | 38·10 <sup>-3</sup> |
| 4        | 24·10 <sup>-3</sup> | 24·10 <sup>-3</sup> | 10·10 <sup>-3</sup> | 16·10⁻³             | 10·10 <sup>-3</sup>   | 23·10 <sup>-3</sup> | 5·10 <sup>-5</sup>   | 88·10 <sup>-3</sup> |

\*b.r. – before radiation, \*\*a.r. – after radiation

| Locality |                        |      | Chemic                        | al form |                         |      |
|----------|------------------------|------|-------------------------------|---------|-------------------------|------|
| -        | Mn <sup>2+</sup>       |      | MnSO <sub>4(aq)</sub>         |         | MnHPO <sub>4(aq)</sub>  |      |
|          | mol/l                  | %    | mol/l                         | %       | mol/l                   | %    |
| 1        | 1.54·10 <sup>-6</sup>  | 89.3 | 1.314· 10 <sup>−7</sup>       | 7.59    | 4.62 · 10 <sup>−8</sup> | 2.67 |
| 2        | 6.458·10 <sup>-7</sup> | 94.2 | $3.9 \cdot 10^{-8}$           | 5.97    | 9.7·10 <sup>−9</sup>    | 1.48 |
| 3        | 6.5·10 <sup>-7</sup>   | 94.1 | 9.2·10 <sup>-9</sup>          | 4.17    | 2.89·10 <sup>-8</sup>   | 1.33 |
| 4        | 1.37·10 <sup>−7</sup>  | 75.7 | <b>3.8</b> ⋅ 10 <sup>-8</sup> | 20.9    | $5.94 \cdot 10^{-9}$    | 3.26 |

| Locality |                       |      | Chemi                         | cal form |                                |      |
|----------|-----------------------|------|-------------------------------|----------|--------------------------------|------|
|          | Mn <sup>2+</sup>      |      | MnSO <sub>4(aq)</sub>         |          | MnHPO <sub>4(aq)</sub>         |      |
|          | mol/l                 | %    | mol/l                         | %        | mol/l                          | %    |
| 1        | 1.15·10 <sup>-7</sup> | 81.3 | 2.49· 10 <sup>-8</sup>        | 17.5     | $1.47 \cdot 10^{-9}$           | 1.03 |
| 2        | 8.3·10 <sup>-8</sup>  | 93.4 | 5·10 <sup>-9</sup>            | 5.7      | $6.7 \cdot 10^{-10}$           | 0.7  |
| 3        | 8.6·10 <sup>-8</sup>  | 95.4 | <b>3.6</b> ⋅ 10 <sup>-9</sup> | 4        | $3.9 \cdot 10^{-10}$           | 0.4  |
| 4        | 8.7 $\cdot 10^{-10}$  | 96.3 | $2.5 \cdot 10^{-11}$          | 2.7      | <b>7.9</b> ⋅ 10 <sup>-12</sup> | 0.87 |



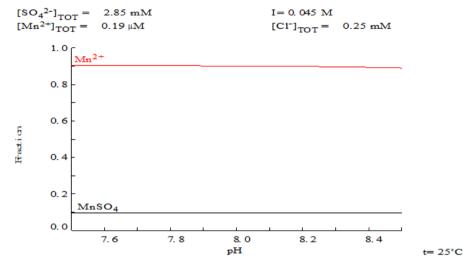



Fig. 1. Dominant labile forms of manganese in the summer period

#### 4. CONCLUSION

- The distribution of manganese traces in four different localities through four seasons was monitored by applying an electrochemical method, differential pulse stripping voltammetry. The method proved to be very selective for determining the content of very low concentrations in the water.
- Testing the metals mobility in the water/sediment system by changing the physico-chemical conditions, enables a better understanding of the environmental risk assessment and understanding of the distribution process from the sediment.
- 3. The obtained for analysis results manganese are important for the revitalization of the Modrac Lake accumulation. They clearly indicate the certain presence of metals and provide information on the sediment quality.
- Inorganic speciation has determined that the highest metals concentrations are in the labile form for manganese in the spring and summer due to lower redox conditions

compared to autumn and winter, which results in the release of this metal from the sediment and increase its concentration in water.

5. The composition or concentration of labile forms of metals is controlled by pH value, the type of ligand to which the metal binds and the ionic strength. Increased ionic strength in the summer is the result of the excretion of higher concentrations of contaminants in the Modrac Lake accumulation.

#### **COMPETING INTERESTS**

Authors have declared that no competing interests exist.

#### REFERENCES

 Indira Š. Ispitivanje kinetike reakcije formiranja metalnih kompleksa i biogeodistribucije teških metala u prirodnim vodama i sediment. Doktorska disertacija. Tehnološki fakultet Univerziteta u Tuzli. 2015. *Bosnian.*

- Pires VGR, Lima DRS, Aquino SF, Libanio M. Evaluating arsenic and manganese removal from water by chlorine oxidation followed by clarification. Brazilian Journal of Chemical Engineering. 2015;32(2): 409-419.
- 3. Dauvalter V, Rognerud S. Heavy metal pollution in sediments of Pasvik River drainage. Chemosphere. 2001;42:9-18.
- 4. Chale FMM. Trace metal concentrations in water, sediments and fish tissue from Lake Tanganyika. The Science of the Total Environment. 2002;299:115-121.
- Akcay H, Oguz A, Karapire C. Study of heavy metal pollution and speciation in Buyak Menders and Gediz River sediments. Water Reserach. 2003;37(17): 4086-4094.
- Mitch M. Phitoextraction of toxic metals-A rewiev of biological mechanisms. Journal of Enviromental Quality. 2002:31:109-120.
- 7. Goletić Š. Teški metali u okolišu. Univerzitet u Zenici. 2005:1-46
- Snežana Aksentijević. Doktorska disertacija. Model distribucije rezidua hazardnih teških metala između čvrste i tečne faze. Novi Sad. Serbian; 2011.
- 9. United Nation Environment Program, International Labour Organization and World Health Organization, Environmental Health Criteria 17, Manganese, Environmental Science Press; 1991.
- Romić Ž. Arsen u podzemnoj vodi osječkog vodocrpilišta i oksidacija arsenita prikondicioniranju vode. Doktorska disertacija. Prehrambeno-tehnološki Fakultet U Osijeku. Croatian; 2009.

- 11. Hem JD. Study and interpretation of the chemical characteristics of natural water. University Press of the Pacific. Honolulu; 2005.
- Marina Svađumović. Uklanjanje mangana, amonijaka i željeza iz sirove vode na vodocrpilištu Davor. Završni rad. Veleučilište U Požegi. Serbian; 2019.
- Moaweda EA, Burham N, El-Shahat MF. Separation and determination of iron and manganese in water using polyhydroxyl polyurethane foam. Journal of the Association of Arab Universities for Basic and Applied Sciences. 2013;14(1): 60-66.
- 14. O'halloran RJ, Blutstein H. AC and DC cyclic voltammetry of Mn (II) at mercury with applications to anodic stripping analysis, Journal of Electroanalitical Chemistry. 1981;125:261-271.
- 15. O'halloran RJ. Anodic stripping voltammetry of manganese in seawater at a mercury film electrode. Analitica Chimica Acta. 1982;140(1): 51-58.
- Christopher B, Maria N. Voltammetric studies and stripping voltammetry of Mn (II) at the wall-jet ring-disc electrode. Journal of Electroanalitical Chemistry. 1989;258:345-355.
- Roitz S, Bruland KW. Determination of dissolved manganese (II) in coastal and estuarine waters by differential pulse cathodic stripping voltammetry. Analitica Chimica Acta. 1997;344(3): 175-180.
- 18. Jin JY, Xu F Miwa T. Electroanalysis. 2000;12:610.

© 2021 Šestan et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle4.com/review-history/71174