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ABSTRACT 
 

In this study, we used the Path integral method to obtain the bound state solutions of the Hellmann 
potential. Firstly we analytically derived the radial kernel expression of the Hellmann potential using 
the approximation of the centrifugal term and space-time transformations. Then we calculated the 
exact energy spectrum and the normalized eigenfunction from the poles of the Green function and 
their residues. We expressed normalized wave functions in terms of Jacobi polynoms and 
Hypergeometric functions. 
 

 
Keywords: Path integral; Hellmann potential; Green’s function; space-time transformation; centrifugal 

term. 
 

1. INTRODUCTION 
 

In recent years, numerous studies have been 
carried out to obtain the analytical full solutions of 
the wave equations of various potentials                     
in relativistic and non-relativistic quantum 

mechanics. Many methods are used for this 
purpose: SUSYQM formalism the Nikiforov-
Uvarov approach, Functional analysis approach, 
Factorization method, Path Integral, the power 
series expansion, the asymptotic iteration 
method [1–10]. 
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The Hellmann potential expressed as the sum of 
Yukawa and Coulomb potentials is: 
 

�(�) = −
�

�
+ �

����

�
   .           (1) 

 
Here � and � are the strengths of potentials and  
� is the screening parameter. � and � may also 
be positive and negative, assuming positive 
parameters �. The Hellmann potential, which has 
many applications in atomic physics and 
condensed physics, is used to represent 
electron-nuclei and electron-ion interactions [11-
17]. It has been used as a model for potential 
alkaline hydride molecules and has been found 
to be an appropriate potential for studying inner 
shell ionization problems [18,19,20]. 
 
Feynman path integral is one of the methods of 
obtaining analytical solution used to describe the 
energy spectrum and wave functions of systems. 
This method is in complete agreement with the 
general formalism of quantum mechanics 
suggested by Schrödinger, Heisenberg and 
Dirac. It is based on the propagator containing 
quantum mechanical amplitude for a point 
particle at a position ��  at time ��  to reach a 
position ��  at time��  integrate over all possible 
paths connecting by the classical action. Using 
path integral method, the kernel of the system 
and the Green function are obtained so that they 
can be derived with the help of the energy 
spectrum and the corresponding wave functions 
[21]. Although the path integral method is a 
powerful method, it is difficult to calculate the 
path integral for a number of quantum 
mechanical systems. Duru and Kleinert 

developed a method called Kustaanheimo-Stiefel 
(KS) transformation in order to apply this method 
to the H-atom problem in 1979 [5]. Then, 
relativistic and non-relativistic wave equations of 
various potentials were studied: the Morse 
oscillator, the Woods-Saxon potential, the 
Hulthen potential [6-10]. In spherical symmetric 
systems, the centrifugal barrier term appears, 
which plays an important role in the scattering 
problems of the physics. The Schrodinger 
equation with some exponential type potentials 
does not have analytical l-wave solutions. For 
such potentials, they must use approximation 
schemes because of the term centrifugal barrier. 
Several methods have been used to obtain exact 
or approximate solutions of the Schrödinger 
equation for exponential type potentials [12-17]. 
 
The object of this study is to evaluate energy 
spectrum and wave functions of the Hellmann 
potential via path integral method. The 
organization of this paper is as follows. In section 
2.1 Kernel and energy dependent Green's 
function of Hellmann potential are derived using 
space-time transformation. In section 2.2 energy 
eigenvalues and the corresponding wave 
functions are obtained using Green’s function. 
 
2. MATERIALS AND METHODS 
 
2.1 The Kernel of the Hellmann Potential 
 
The kernel of spherical symmetric potential 
between the initial position �� at time �� = 0 and 
final position �′′ at time �′′ has the following form 
[22]: 

 

�(���,���;��,��) =
�

(�����)
 ∑  

(����)

��
��(���,���;��,��)��(����)�

���                                                        (2)                              

 

where ��(����) is the Legendre Polynomial with the � ≡ (� ′′,�′) and ����′′,�′′;� ′,�′� is the radial Kernel 

in the time interval ∆��. Path integral express in terms of an integral over all paths in configuration 

space. Radial kernel is described as 
 

��(���,���;��,��) = lim�→ � ∫ ∑ ��� �
�

ℏ
����

��� ∏ �
�

����ℏ
�

�/�
 ∏ ���
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���       �

���                                       (3) 

 
Here �� is partial action and ∆�� = �� − ����, � = �� − ����, �′ = �� = ��, �′′ = �� = �� . Partial action is  

 

 �� = ����� − ����� − �
��

�

��
+

ℏ��(���)

���� + ������.                                                         (4) 

 
Using the term of the following approximation instead of the centrifugal term 
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�� =
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inserting the radial kernel Eq. (3) becomes 

 

 

���� ′′,�′′;�′,�′� = lim
�→ ∞

� � ���

�
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exp {

�

ℏ
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∞
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−
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�

2µ
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(1 − ����)�
� − �����. 

 

(6) 

Defining the new angular variable ��(0,�) to transform the radial variable ��(0,∞) 

 

 
              � = −

1

�
ln(−�����)           �� =

�

2
���������� 

 

 

             (7) 

the kernel in Eq. (6) can be written as 

 

  

���� ′′,� ′;�� =
�

�
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�

�
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−
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4
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         (8) 

 

where ����������� is the contribution to Jacobien because of the coordinate transformation in Eq. (7). 

When the factor �²���²����²�  in front of kinetic energy term is the eliminated by the time 
transformation [6-9] 

 

 
��

��
=

�

������������
                                                     (9) 

 

the Fourier transform of the � −function is added to the kernel as follows 
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 (10) 

 

Then radial kernel becomes  
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(11)               

 

We can symmetrize the contribution from Jacobien to coordinate transformation as follows 

 

 
1 
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Thus Eq. (11) takes 
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where 
 

 

�(��,��;�) = � ��� �� ���{� � ��[��� −̇
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(14) 

 
and κ and λ are 
 

 

� =
1

2
�1 ± �1 +

32

�
�

��

�
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� =
1

2
�1 ± �1 +

32

�
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2
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�
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(15) 

 

The path integral solutions of the Trigonometric Pöschl-Teller potential are well known that the kernel 
in Eq. (14) can be reduced to the potential of this potential 
 

 �(��,��;�) = � ��� �� ���{� � ��
�

�

[��� −̇
��

�

2
−

1

2
(
�(� − 1)
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)]                (16) 

 
The expression of the kernel in Eq. (16) in relation to the wave functions is as follows 
 

 �(��,��;�) = � ���[−�(�/2)(� + � + 2�)�]

∞

���

��(��)�∗
�

(��) 
              (17) 
 

 

Where 
 

 
��(�) = �2(� + � + 2�)�

�(� + 1)�(� + � + �)

�(� + � + 1/2)�(� + � + 1/2)
 

× (��� �)�(��� �)���
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(1 − 2���� �) 

(18) 

 

and energy spectrum is �� =
�

�
(� + � + 2�)� . 

 
Using the kernel, we can obtain the Green’s function. The Green’s function for Hellmann potential is 
written as 
 

 

�(��,��;�) =
−4�
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(19) 

 

2.2 Energy Eigenvalues and Wave Functions  
 
Green's function and Kernel for the Hellmann potential was calculated in section (2.1) using Feynman 
Path integral method. Integrating over dE, the energy eigenvalues can be derived from the poles of 
the Green function as 
 

�� = −
�
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If Eq. (13) perform 
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Here 
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where we got 
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(22) 

 
Using the following equation 
 

 ��
(�,�′)(�) =

�(� + � + 1)

�! �(� + 1)
� �−�,� + � + �′ + 1,�′ + 1,

1 + �

2
� (21) 

 
We can write the wave function in Eq. (21) with the terms of the hypergeometric functions as 
 

 

�(�) = �(�� + �� + 2�)�
�(� + 1)�(�� + �� + �)� �� + �� +

1
2

�
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1
2�

×
(−�����)��

�
�
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�
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× � �−�,�� + �� + �,�� + 1/2,−
����

�������. 

  
(24) 

 

 
Therefore we evaluated energy spectrum and wave functions for the Hellmann potential. 
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3. CONCLUSIONS 
 
In this work, we have investigated the 
Schrodinger Equation with the Hellmann 
potential for � , �  quantum states. We used 
space-time transformation to obtain energy 
eigenvalues and corresponding wave functions. 
We expressed normalized wave functions in 
terms of Jacobi polynoms and Hypergeometric 
functions.  
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