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ABSTRACT 
 

In the present paper some moments of generalized one-dimensional Szasz operator in the spaces 
of continuously differentiable functions is found. Also, in two-dimensional case a generalization of 
Szasz operator is considered and certain moments of this operator in the spaces of continuously 
differentiable functions is found. 
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1. INTRODUCTION 
 
This work is devoted to the computing of some 
moments of generalized Szasz operator. To 
reveal what novelties this paper brings, we briefly 

present both a background and some historical 
comments. The main problem of approximation 
theory consists in finding for a complicated 
function a close-by simple function. At 70 years 
old, Weierstrass (1815–1897) proved the density 
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of the algebraic polynomials in the space 
[ ]baC ,  and of the trigonometric polynomial in 

[ ]baC ,
~

. Weierstrass approximation theorem 
stating that every continuous function on a 
bounded interval can be approximated to 
arbitrary accuracy by polynomials is such an 
important example for this process and has been 
played the significant role in the development of 
analysis. By using probability theory Bernstein [1] 
proved the Weierstrass theorem and defined 
approximate polynomials known as Bernstein 
polynomials in the literature (see [2]). Namely, in 
1912, Bernstein [1] constructed an approximate 
polynomials in the form     
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where [ ].1,0Cf ∈  In [3,4] Stancu introduced 
some generalizations of Bernstein polynomials.  
 
In 1950, Szasz defined and studied the 
approximation properties of the following 
operators  
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 where [ )∞∈ ,0Cf  satisfies exponential-type 
growth condition [5]. In 1962, Schurer [6] 
introduced and studied the approximation 
properties of linear positive operators. An 

extension in q -calculus of Szasz operators was 
constructed by Aral [7] who formulated also a 

Voronovskaya theorem related to q -derivatives 
for these operators. After that several other 
researchers have studied in this direction and 
obtained different approximation properties of 
many operators [8,9,2]. The weighted Korovkin-
type theorems were proved by Gadzhiev [10]. 
Recently, approximation theorems for 
generalized Szasz operators and Bernstein-
Chlodowsky polynomials was proved in [11,12].  
 
In this paper certain moments of generalized 
one-dimensional and two-dimensional Szasz 
operator  are found.  
 
2. PRELIMINARIES  
 
Now we give the definitions of one-dimensional 
and two-dimensional generalized Szasz 
operator. 
 
Definition 2.1. Let 
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The operator );(, xfS rn  defined by (2.1) is  

called the generalized one-dimensional Szasz 
operator.  
 

Remark 2.1. Note that for 0=r  the operator 

);(, xfS rn  is coincide with classical Szasz 

operator (1.1). 
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Definition 2.2. Let   
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 where rmlrmRCf m ,...,1,0,,,0),( 2),( =≤≤∈ + l
l  and we denote 

 

.
0 yx

f

m

l
y

n

k
xCf

ym

l
y

xn

k
x

ppi

ippii

p

p
i

i

∂∂
∂








 −






 −=








∂
∂








 −+
∂
∂








 − −

−

=
∑

 



 
 
 
 

Mammadova; JSRR, 17(1): 1-6, 2017; Article no.JSRR.37520 
 
 

 
3 
 

The operator ),;(,, yxfS rmn  defined by (2.2) is 

called the generalized two-dimensional Szasz 
operator.  
 
Remark 2.2. Note that for 0=r  the operator 

);(, xfS rn  is coincide with classical two-
dimensional Szasz operator. In other words    
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3. MAIN RESULTS  
 
Now we reduce the main results of this paper. 
 
Theorem 3.1. For the generalized Szasz 
operator the following equalities hold: 
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Proof. Let us take 1)( =tf  in (2.1). We get 
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It is obvious that for 0=r  we have  
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For 1=r  we get  
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Finally, for 2≥r  we have that 
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This completes the proof of the Theorem 3.1. 
 
Remark 3.1. Note that for   Theorem 3.1 in 
different form was proved in [13]. 
 

Theorem 3.2. Let ( ) .,0,2),( rjiRCf ji ≤≤∈ +  
Then the following equalities hold: 
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In the same way, if ττ =),(tf then we have  
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and this ends the proof of the Theorem 3.2. 
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4. CONCLUSION 
 
Thus, some moments of generalized one-
dimensional Szasz operator in the spaces of 
continuously differentiable functions is found. 
Also, in two-dimensional case a generalization of 
Szasz operator is considered and certain 
moments of this operator in the spaces of 
continuously differentiable functions is found.   
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