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Abstract

Exoplanets observed by the Kepler telescope exhibit a bimodal, radius distribution, which is known as the radius
gap. We explore an origin of the radius gap, focusing on multiplanet systems. Our simple theoretical argument
predicts that type I planetary migration produces different configurations of protoplanets with different masses and
such different configurations can result in two distinguishable populations of small-sized multiplanet systems. We
then perform an observational analysis to verify this prediction. In the analysis, multiple Kolmogorov–Smirnov
tests are applied to the observed systems, using the statistical measures that are devised to systematically
characterize the properties of multiplanet systems. We find with 99.5% confidence that the observed, small-sized
multiplanet systems are divided into two distinct populations. The distinction likely originates from different
spatial distributions of protoplanets, which are determined by type I migration and subsequently trigger giant
impact. We also show that these distinct populations are separated around the radius gap when the gas surface
density of protoplanetary disks is ∼102 g cm−2 in the vicinity of the host stars. This work therefore emphasizes the
importance of planetary migration and the inner disk properties.

Unified Astronomy Thesaurus concepts: Planet formation (1241); Planetary migration (2206); Super Earths (1655);
Mini Neptunes (1063); Protoplanetary disks (1300); Exoplanet dynamics (490)

1. Introduction

The rapid increase of observed exoplanets revolutionizes our
understanding of planet formation (e.g., Winn & Fabrycky 2015
for a review), which has been accelerated thanks to the Kepler
mission (Borucki et al. 2010). One famous, astonishing result is
that small-sized planets whose radii are larger than 1 R⊕ and
smaller than 4 R⊕ are dominant in the observed population
(e.g., Howard et al. 2010). This is consistent with the
pioneering discovery of radial velocity observations (Mayor
et al. 2011).

The ubiquity of observed small-sized planets has challenged the
canonical picture of planet formation (e.g., Ida & Lin 2004). This
is because there is no such analog in the solar system, and hence
both the observational characterization of these planets and the
theoretical development of possible formation mechanisms have
been required. For the former, the follow-up observations of
exoplanet-host stars reveal that the radius range of small-sized
planets is divided into two regimes (Fulton et al. 2017):
1 R⊕Rp 1.8R⊕ and 1.8 R⊕ Rp 4R⊕. Based on the bulk
density (e.g., Weiss & Marcy 2014; Rogers 2015), planets in the
first regime can literally be called a “super-Earth,” and those in the
second regime may be named a “sub-Neptune.” The presence of
these bimodal populations has been popularized as the “radius gap
(or valley),” and triggered a number of theoretical studies. Recent
studies suggest that both the formation and evolution processes
can generate the gap (e.g., Owen & Wu 2013; Ginzburg et al.
2018).

The multiplicity is another important feature of observed
small-sized planets (e.g., Lissauer et al. 2011), which also sheds
light on their formation mechanisms (e.g., Hansen & Murray
2013; Dawson et al. 2016). Intriguingly, Weiss et al. (2018)
confirm the presence of the radius gap, focusing only on
exoplanets in multiplanet systems. This finding may suggest that
physical processes inevitable for shaping multiplanet systems
would contribute to the generation of the radius gap.

Here, we show through a simple theoretical argument and an
observational analysis that planetary migration produces
different configurations of protoplanets with different masses
and that this difference and the subsequent giant impact lead to
two distinguishable populations of small-sized multiplanet
systems. It is prominent that the dividing radius of these two
populations broadly corresponds to the radius gap when the gas
surface density of the natal protoplanetary disk has a low value
(∼102 g cm−2) in the vicinity of the central star. Thus, this
work points out the importance of planetary migration and the
inner disk properties to better understand the observed
properties of super-Earths and sub-Neptunes.

2. Theoretical and Observational Analyses

2.1. Exoplanet Data

We first introduce the exoplanetary data that will be used in
the following analyses; in these analyses, the mass (Mp), radius
(Rp), and semimajor axis (ap) of planets and the mass (Ms) of
the host stars are needed.
We obtain the Kepler data from the NASA Exoplanet Archive

(NASA Exoplanet Science Institute 2019).3 We focus only on
multiplanetary systems orbiting around single stars, which are
comprised of both confirmed and candidate planets. We filter
out the systems that do not have certain quantities and hence
our analyses cannot be applied to them. These are the surface
gravity, effective temperature, and radius of the host stars, and
the radius and orbital period of planets. Note that the stellar
parameters are needed both to identify whether the host stars
are the main-sequence ones, and to compute their masses. For
the former, we follow the approach of Mulders et al. (2018),
where dwarf stars are identified, based on the relationship
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3 We accessed https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/
nph-tblView?app=ExoTbls&config=cumulative on 2021 January 21 at 16:17,
and obtained the data with the size of 9564 ×49 columns.
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between the surface gravity and effective temperature (Huber
et al. 2016). For the latter, we use the mass–luminosity and the
mass–radius relations (Eker et al. 2018).4

We select planets whose radius is in the range of
0.1 R⊕� Rp� 30 R⊕. Following Thompson et al. (2018), we
adopt the disposition score of >0.6, where the trade-off
between reliability and completeness is achieved properly (see
the top panel of their Figure 13). We have confirmed that our
results do not change very much even if planets with the
disposition score of >0.5 are chosen. The semimajor axis of
planets is computed, using Kepler’s third law.

In summary, we have a total of 348 planetary systems with
870 exoplanets observed by Kepler.5

2.2. Mass–Radius Relation

The planet mass is one fundamental quantity for our analyses
and is computed from the mass–radius relation.

We utilize the pretrained model developed by Chen &
Kipping (2017), where an unbiased forecasting model was built
upon for a probabilistic mass–radius relation with the Bayesian
framework. They found that the mass–radius relation is divided
into two regimes for small-sized planets: Mp 2M⊕ and
2M⊕Mp 100M⊕, and the corresponding regimes are
referred to as the Terran worlds and the Neptunian worlds,
respectively.

Figure 1 shows the computed masses for given radii. We
subsequently fit these data and confirm that the resulting power-
law indices for the two types of planets are similar to those of
Chen & Kipping (2017). It is interesting that the Neptunian
worlds reside in the radius range of 1.2R⊕Rp 10R⊕, and
therefore they cover both (massive) super-Earths and the entire
sub-Neptunes.

2.3. Theoretical Prediction: The Importance of Planetary
Migration

The formation of small-sized, multiplanet systems is
currently the target of active research (e.g., Ida & Lin 2010;
Chiang & Laughlin 2013; Hansen & Murray 2013; Izidoro
et al. 2017), and it is still far from being completely understood.
Our theoretical argument assumes that type I migration and

the subsequent giant impact play an important role in forming
small-sized, multiplanet systems; type I migration takes place
due to the disk–planet interaction and becomes effective for
low-mass planets (Mp 1M⊕; e.g., Kley & Nelson 2012).
Giant impact is the collision between protoplanets and serves as
the final mass assembly for terrestrial planets in the solar
system (e.g., Chambers 2001, hereafter C01).
Under this assumption, the importance of planetary migra-

tion to trigger the subsequent giant impact between neighboring
protoplanets may be determined by the difference between the
mutual spacing (Δmig) achieved by type I migration and that
(Δesc) by the escape velocity; Δesc is the result of the pure
gravitational interaction between the neighboring protoplanets
and is the largest separation between them before they undergo
giant impact (e.g., Schlichting 2014):

( )D a
v

v
2 , 1pesc

esc

Kep

where vKep is the Keplerian velocity, and =v GM R2 p pesc is
the escape velocity for the neighboring protoplanets with
comparable masses and radii.
Planetary migration affects the onset of the subsequent giant

impact considerably if the following condition is met:

( )D < D . 2mig esc

Mathematically, Δmig can be computed from the consideration
that the speed (vmig) of (differential) type I migration, which
reduces the mutual spacing (b= |ap,i− ap,j|) between the
neighboring protoplanets (i, j), is compensated for by the
gravitational repulsion between them (Ida & Lin 2010). For
vmig, it is written as (e.g., Hasegawa & Pudritz 2011)
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where Σg and H are the gas surface density and the pressure
scale height of the natal protoplanetary disk, respectively, and
Kmig is a coefficient that accounts for the differential speed and
the detail of disk properties. For simplicity, we adopt here that
H/ap= 0.02, Kmig= 1, and Ms= 1Me. For the gravitational
repulsion, the expansion (δb) of the mutual spacing is given by
linear theory as (Hasegawa & Nakazawa 1990)
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1 3 is the mutual Hill radius for the

neighboring protoplanets with comparable masses. Since the
expansion is driven by encounters that occur at every synodic
period (Tsyn), the expansion rate becomes

( ) ddb
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b

T
, 5

syn

Figure 1. The mass–radius relation for exoplanets in our data set. The cyan
dots with the error bars represent planets in the Terran world (i.e., M  2M⊕),
and the light green dots with the error bars represent planets in the Neptunian
worlds (i.e., 2M⊕  M  100 M⊕). The corresponding fitting profiles are
denoted by the blue dashed and the green solid lines, respectively.

4 Note that the stellar masses estimated by our approach are comparable to
those obtained using the Gaia data (Berger et al. 2020); we find that the
difference is small (<20%) enough for most cases that our results do not
change very much.
5 Note that we have removed one planetary system, Kepler-1659, due to the
unphysically high mass of one planet.
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where  pT a bv4 3psyn
2

Kep. In summary, Δmig can be com-
puted, by equating vmig with δb/Tsyn.

Figure 2 shows the resulting behaviors of Δesc and Δmig as a
function of planet mass. In this plot, the mass–radius relation
obtained in Figure 1 is used to compute Δesc. As an example,
we adopt the value of Σg= 5× 102 g cm−2 at ap= 0.1 au to
calculate Δmig. In addition, the mass regime where type I
migration becomes effective is denoted by the solid line of
Δmig, following Hasegawa & Pudritz (2012).

We find that Δmig>Δesc for the planet mass of Mp 1M⊕,
Δmig<Δesc for 1M⊕Mp 10M⊕, and Δmig;Δesc for
Mp 10M⊕ in this particular setup. Note that the mutual
spacing of 20rH corresponds to the period ratio of ∼1.5, which
is consistent with the peak value of the observed exoplanets
(e.g., Choksi & Chiang 2020). Our value is, however, larger
than what the typical numerical simulations predict (i.e., ∼a
few rH; e.g., Izidoro et al. 2017). This difference comes from a
lower value of Σg (see Section 3 for more discussion).

Given that the mutual spacing is one key parameter for giant
impact, it is natural to consider that protoplanets with ΔmigΔesc

undergo giant impact more efficiently/rapidly than those in
Δmig>Δesc. This consideration leads to the expectation that
(proto)planets in the red shaded region may surely experience giant
impact and obtain higher masses. Note that the size of the region
depends on the power-law index of the mass–radius relation;
assuming that µ bR Mp p , Δmig∝M−1/12 and Δesc∝M(1/3−β)/2

in the unit of rH. The region expands if β> 1/3 and shrinks if
β< 1/3 in the Neptunian worlds, compared with Figure 2.
However, the region surely exists if Σg is larger than a threshold
value (see Section 3).

In the following, we conduct the observational analysis to
verify our theoretical prediction.

2.4. Statistical Measures

The direct observables (e.g., the period ratio of neighboring
planets) can be used to characterize multiplanet systems (e.g.,
Weiss et al. 2018; Zhu et al. 2018). However, as the number of
planets in the systems increases, the complexity in system-
atically characterizing multiplanet systems as a whole increase
(e.g., Gilbert & Fabrycky 2020).

In order to resolve this issue, we adopt the so-called
“statistical measures” that are devised by C01. We focus here
on two quantities that are computed directly from Mp, ap, and
Ms.
The first quantity is the mass concentration (Sc) that

measures the degree to which the planet mass is concentrated
in a certain location of the system and is calculated as
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where the summation is done for the index j. By changing a, the
maximum value is searched. Based on N-body simulations, the
value of Sc reflects the initial spatial distribution of protoplanets
that undergo giant impact eventually (Hansen 2009, hereafter H09;
Hansen & Murray 2012, hereafter HM12).
The second quantity is the orbital spacing (Ss) that is

somewhat similar to the averaged mutual spacing normalized
by the mutual Hill radius. The main difference is that Ss is
normalized by Mp

1 4 (not Mp
1 3) and is motivated by the results

of N-body simulations that explore the stability of multiplanet
systems (Chambers et al. 1996):
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where N, ap,max, ap,min, and Mp are the number, the maximum
and the minimum values of the semimajor axis, and the mean
mass of the planets in a system, respectively.

2.5. Observational Analysis: KS Tests

We now perform the Kolmogorov–Smirnov (KS) test for the
cumulative distributions of Sc and Ss to determine whether the
population of small-sized, multiplanet systems can be divided
into subgroups.
The KS test is a nonparametric test and is used to discover

whether two samples are drawn from the same distribution,
based on the null hypothesis. The significance level (also
referred to as α) is the probability of rejecting the null
hypothesis when it is actually true. The KS test for the two
samples returns a KS statistic () and a p-value (). Based on
the value of α, we calculate a critical value (Dcrit), which is
given as

⎜ ⎟
⎛
⎝

⎞
⎠

( ) · ( )a= +D c
n n

1 1
, 8crit

1 2

where ( ) ( )a a= -c ln 2 2 , and n1 and n2 are the two
sample sizes we employ. If > Dcrit or a< , then we can
reject the null hypothesis at a level of α.
We choose the average mass of planets in the systems

(Mp,ave) as a parameter to divide the full samples into two
groups; the current Kepler data suggest that at least the planet
radius difference in the systems may be insignificant (Weiss
et al. 2018). This does not necessarily mean that the planet
mass difference is small as well (see Figure 1). However, the
mass–radius relation is the best tool currently available in
the literature to estimate the planet mass, and hence we use the
planet mass for our KS tests. Practically, we bin the mass
range of 1M⊕�Mp,th� 10M⊕ with a bin size of 0.5M⊕,
where Mp,th is a parameterized threshold mass to divide the full
samples into two groups, and compare these two samples:

Figure 2. The mutual spacing as a function of planet mass for the case where
Σg = 5 × 102 g cm−2 at ap = 0.1 au. Planetary migration achieves narrower
mutual spacings for the mass range of 1 M⊕  Mp  10 M⊕ (see the red shaded
region). The mass–radius relation is used to plot Δesc (see the black dashed
line). For Δmig, the solid line denotes the mass regime where type I migration
becomes effective (see the magenta line). The background cyan and light green
regions represent the Terran and Neptunian worlds, respectively.
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planetary systems with Mp,ave�Mp,th and those with
Mp,ave>Mp,th.

Figure 3 summarizes our results; the left panel shows the
results of our KS tests, and the central and right ones depict the
cumulative distributions of Sc and Ss for the best case (i.e.,
Mp,th= 3.5M⊕). We find that for the mass concentration, the
null hypothesis can be rejected for 2.48M⊕<Mp,th< 6.3M⊕
with the 99.5% confidence (i.e., α= 0.005); this is evident
from the KS statistic, which is greater than the value of Dcrit in
this range. Our analysis therefore suggests that the full samples
can be divided into two groups at Mp,th= 3.5M⊕. On the other
hand, a similar distinction is not possible for the orbital
spacing.

We discuss below how our observational analysis is
consistent with our theoretical prediction, and why the mass
concentration and orbital spacing behave differently.

3. Discussion

Our theoretical argument has suggested that planetary
migration should have played a more important role for planets
with Mp 2M⊕ (Figure 2), and our observational analysis has
shown that planetary systems with Mp,ave 3M⊕ have a higher
value of Sc than those with Mp,ave 3M⊕ (Figure 3). Based on
these results, we here discuss how small-sized, multiplanet
systems form.

First, we point out that both of our analyses lead to a consistent
picture that super-Earth (i.e., Mp,ave 3M⊕) systems form out of
narrow ring-like distributions of protoplanets while sub-Neptune
(i.e.,Mp,ave 3M⊕) systems form from radially wide distributions
of protoplanets. The difference in the spatial distribution of
protoplanets is produced by planetary migration; a chain of
protoplanets tends to form readily with a wider radial extent for
massive protoplanets due to faster migration. Importantly, the
existing N-body simulations already show that different (narrow
versus wide) spatial distributions of protoplanets leads to different
(high versus low) values of Sc. Figure 4 shows the simulation
results obtained by H09 and HM12. The former targets the
formation of terrestrial planets in the solar system and hence starts

from narrow rings whose radial extent is comparable to the
resulting value of Ss. On the other hand, the latter targets the
formation of small-sized planets observed by Kepler and begins
with wide distributions whose radial extent is a few times larger
than the resulting value of Ss.
It is obvious that quantitative comparison between the

observations (Figure 3) and the simulations (Figure 4) cannot
be made due to the observational bias and idealization adopted
in simulations. For instance, the observational bias may
partially wash out the effect of planetary migration; this may
be a reason of why there is no clear difference in the cumulative
distribution of Ss between low-mass and high-mass systems
(Figure 3). However, qualitative comparison may be useful; it
may be reasonable to consider that the difference in the
cumulative distribution of Sc is significant enough to infer the
spatial distribution of protoplanets.

Figure 3. The results of our KS tests and the best case of the cumulative distributions of Sc and Ss (i.e., Mp,th = 3.5M⊕). The left panel shows that Sc can be used to
divide the full sample of small-sized, multiplanet systems into two populations in the mass range of 2.5 M⊕  Mp,th  6.3 M⊕ (see the red shaded region). In this
region, the KS statistic (the red dashed line) is greater than the critical value (the black solid line), and hence the null hypothesis is rejected with 99.5% confidence;
equivalently, low-mass (Mp,ave � Mp,th) and high-mass (Mp,ave > Mp,th) systems are not drawn from the same distribution. On the contrary, Ss does not show the
similar feature. The central and right panels show the best case, where low-mass and high-mass systems are denoted by the blue dashed and the green solid lines,
respectively.

Figure 4. The cumulative distributions of Sc and Ss for the simulation results
made by H09 and HM12. The cumulative distribution of Sc shows a clearer
difference, which comes from different spatial distributions of protoplanets that
eventually undergo giant impact.
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Second, we consider the value of Σg in the vicinity of the
central star. As discussed in Section 2.3, a lower value of Σg may
be preferred, in order to limit the effect of planetary migration
(Figure 2). Under the assumption that the population of low-mass
and high-mass systems is divided at Mp,th, one can compute the
optimal value of Σg. Figure 5 shows the results. It is interesting
that the resulting values are much lower than the minimum-mass
solar nebula (MMSN) model (Hayashi 1981). This difference is
readily understood by the fact that there is no close-in planet in the
solar system, and hence the MMSN model is not sensitive to such
a region. Furthermore, the recent studies support the lower Σg in
the vicinity of the central star (e.g., Choksi & Chiang 2020),
which may be caused by stellar magnetic fields (Hasegawa et al.
2019) and/or disk winds (Ogihara et al. 2015).

Finally, we comment on caveats involved in this work. The
most important one would be the observational bias as discussed
above. Since it would be complicated to reliably determine the
observational bias for multiplanet systems, it may be straightfor-
ward to run simulations and impose the bias on the simulation
results as done by Mulders et al. (2020) and He et al. (2020).
This approach allows one to compare simulations and observa-
tions directly and quantitatively. Detailed simulations are desired
to verify the results of this work, which is the target of our
future work.

Thus, planetary migration and the properties of protoplane-
tary disks in the vicinity of the central stars are the key to better
understanding the origin and properties of observed super-
Earths and sub-Neptunes.

The authors thank an anonymous referee for useful
comments on our manuscript. This research was carried out
in part at JPL/Caltech, under a contract with NASA. Y.H. is
supported by JPL/Caltech.
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