
  

_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: erwintjlin@mdu.edu.tw; 

 
 

Journal of Scientific Research & Reports 
10(1): 1-13, 2016; Article no.JSRR.23459 

ISSN: 2320-0227 
 

SCIENCEDOMAIN international 
             www.sciencedomain.org 

 

 

Evaluating Performance of IC Packaging and 
Testing Firms by Bootstrap Data Envelopment 

Analysis 
 

Erwin T. J. Lin1*  
  

1Department of Marketing and Logistics, MingDao University, Taiwan. 
 

Author’s contribution  
 

 The sole author designed, analyzed and interpreted and prepared the manuscript. 
 

Article Information 
 

DOI: 10.9734/JSRR/2016/23459 
Editor(s): 

(1) Robert G. DelCampo, University of New Mexico, Anderson School of Management, New Mexico.  
Reviewers: 

(1) Alexandre Ripamonti, University of Sao Paulo, Brazil. 
(2) M. Bhanu Sridhar, GVP College of Engineering for Women, Vizag, India. 

Complete Peer review History: http://sciencedomain.org/review-history/12921 
 
 
 

Received 1 st December 2015 
Accepted 29 th December 2015 

Published 7 th January 2016  
 

 
ABSTRACT 
 

Taiwan’s Integrated Circuit Packaging and Testing (ICPT) industry ranks number one in the world 
with 56% market share. However, facing the keen competition from global market, enhancing the 
operating performance becomes the most important way to be survival. As such measuring the 
efficiency deserves in-depth investigation. This paper adopts DEA and Bootstrap DEA methods to 
evaluate the performance for 24 global ICPT companies in 2010. The results show that, the 
average bias-corrected efficiency is slightly less than DEA efficiency. Based on the results some 
conclusions are drawn and recommendations for improving performance as well as the future study 
are proposed. 
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1. INTRODUCTION 
 
Driven by a quick recovery of the global economy 
in 2010, coupled with the substantial growth of 
smart phones, and other portable electronic 
devices, the output value of world’s integrated 
circuit packaging and testing industry (ICPT) 
reached 47 billion U.S. dollars, and the annual 
growth rate was 23.8% [1]. With 56% market 
share, Taiwan’s ICPT industry ranks number one 
in the world, and three out of the global top five 
ICPT corporations are from Taiwan. However, 
influenced by such natural disasters as Japanese 
earthquake, Thailand flooding, and European 
sovereign debt crisis, the global economic 
visibility decreased and the strength of end 
demand growth has experienced recession since 
the second half of 2010. Furthermore, Taiwan’s 
ICPT firms also face keen competition from 
China, Malaysia, Singapore and South Korea. As 
such, measuring and comparing the operating 
efficiency for ICPT worldwide firms deserve in-
depth investigation.  

 
It is well known that data envelopment analysis 
(DEA) is a linear programming technique for 
estimating the relative efficiency of decision 
making units (DMUs) that perform the same 
tasks in a production system. Since it was firstly 
proposed by Charnes et al. [2], and succeeded 
by Banker et al. [3], various DEA approaches 
have been widely applied for the efficiency 
evaluation throughout different industries, 
including public and private sectors. Since DEA 
possesses many advantages such as it can be 
used to deal with performance evaluation for 
multiple-output multiple-input firms; it is no need 
to specify a functional form to portray the 
relationship between inputs and outputs in prior. 
In this paper we thus adopt DEA to evaluate the 
operating efficiency for some selected 24 global 
ICPT companies in the year of 2010. We choose 
gross sales as output, and select total assets, the 
number of employees, and operating expenses 
as input variables. Moreover, traditional DEA 
(TDEA) models are attributed to deterministic 

frontier method, and have often been criticized 
for not taking into account statistical noise and 
lacking any hypothesis testing. In addition the 
DEA efficiency in general is upward-biased. 
Recently, many researchers have addressed this 
issue, for example Simar and Wilson [4-6] 
proposed to use the Bootstrap DEA (hereinafter, 
BDEA) to derive the bias-corrected DEA 
efficiency and confidence intervals for the 
samples. The basic idea of BDEA is based on 
the concept of sampling replication from the data, 
which is originally developed by Efron [7] and 
extended by Efron and Tibshirani [8]. The 
methods of TDEA and BDEA used in this study 
will be elaborated in Section 3. 
 
The remaining part of this article is organized as 
follows. Section 2 briefly depicts the 
manufacturing process of integrated circuit and 
reviews some of previous works. Section 3 
elaborates the methodologies used in this study, 
including traditional DEA models and bootstrap 
DEA approach. The empirical results and some 
further discussions based on the results are 
described in detail in section 4. Finally, the 
concluding remarks and possible avenues of 
future study are provided in section 5. 
 
2. LITERATURE REVIEW 
 
The manufacturing processes of integrated 
circuit, as shown in Fig. 1, consist of design, 
mask, foundry segment manufacturing, 
packaging and testing. The development of 
Taiwan’s semiconductor industry began in 1966. 
Nowadays, as we mentioned in previous section, 
Taiwan’s IC industry plays an important role in 
the worldwide supply chain system, especially in 
foundry segment manufacturing, packaging and 
testing. In this paper we are focusing only on the 
packaging and testing industry, more specifically, 
we are attempting to evaluate the performance 
for some selected 24 worldwide ICPT firms. 
Before doing so it is important to review the 
relevant previous works in the literature, which 
can be briefly described as follows. 

 

 

Fig. 1. IC manufacturing process 
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Inspired by Fried et al. [9,10], Huang and Huang 
[11] evaluated the total factor productivity growth 
of Taiwanese semiconductor companies, 
including design, manufacturing, packaging and 
testing, and then decomposed it into four 
components, namely: efficiency change, 
technical change, scale efficiency change, and 
total factor productivity change, by a three-stage 
Malmquist DEA panel model. The empirical 
results show that the environmental factors have 
affected efficiency evaluation significantly. The 
results also indicate that Taiwanese 
semiconductor industry has experienced 
efficiency improvement, technical progress and 
productivity growth in 2002-2007. Meanwhile, the 
results also confirmed that productivity growth 
and technological change (efficiency change) are 
overestimated (underestimated) if environmental 
factors are ignored.  
 
Liu and Wang [12] also employed DEA-like 
method to measure the Malmquist Productivity 
Index (MPI) for 15 Taiwan’s ICPT firms from 2000 
to 2003. The input variable used in their analysis 
is liability ratio, and output variables are growth 
rate (%), net profit after tax, profitability ratio (%), 
and output value by employee. When calculating 
4 distance function in MPI measurement, instead 
of radial-based (that is CCR) model in previous 
works, they adopted slacks-based measurement 
(SBM) model and super SBM model developed 
by Tone [13,14]. Comparison is made between 
the results from SBM/Super-SBM and CCR 
models. Since the slacks are taken into account 
in the analysis of SBM/Super-SBM models, the 
authors thus concluded that the results of using 
proposed model are more precise than traditional 
one. 
 
Chen, et al. [15] utilized DEA method to evaluate 
the efficiency of fabrication facilities. In order to 
defines and illustrates the “real” performance and 
the non-production problem, this paper 
developed two-stage model to measure the 
overall performance score when considering 
diffident side. The DMU of this paper is four 
different fabrication facilities within the same 
company. The empirical result shows that the 
two-stage model can provide clear picture on 
production sites performance and better 
interpretation on performance difference. 
 
Shen, et al. [16] also adopted DEA method and 
Malmquist index model to measure production 
performance and productivity of 10 
semiconductor assembly plants. They use 
average employee number, average labor hours, 
and cost of goods sold as input factors; 

production output, average overall equipment 
effectiveness, production cycle time, and 
production ratio as output variables. The 
application results show that technology 
inefficiency is due to unsuitable resource 
allocation in the side of operation efficiency. This 
paper also indicates the reason of the relatively 
inefficient factories is because number of 
employees may use additional hidden costs and 
wastes by using slack variable analysis and 
sensitivity analysis. 
 
Lo and Tzeng [17] measure the performance of 9 
semiconductor manufacturing operation fab-line 
in Taiwan in the year of 1999-2001 by using DEA 
model and the new DEA Fuzzy Multiple Objective 
Programming (FMOP) approach. They use salary, 
cost of goods, chamber, stepmove, patent, and 
margin as input variable, wafer out as only output. 
The results show that, 7 DMUs are evaluated as 
efficient based on the assumption of CCR model, 
9 DMUs were efficient in BCC approach. They 
also try to combine different output factors to 
notice that it is more closely approximate the real 
side. 
 
Jain, et al. [18] adopted DEA approach to 
measure the performance and target setting of a 
wafer manufacturing while two different 
manufacturing environments. The DMU of this 
paper is 51 weeks of the wafer manufacturing, 
and separating 2 parts. The estimated results 
shows 33 out of 51 weeks were inefficient, and 
the number of inefficient of first part is more than 
second part. Finally, this paper gives the wafer 
manufacturing some decision supports. 
 
To sum up, at least three features can be found 
in the previous studies. First of all, although DEA 
methods are widely used for performance 
evaluation of a number of industries, such as 
hospital (Tan and Wang, [19]; Kazley and Ozcan, 
[20]), university (Li, [21]), electricity generation 
and distribution (Arocena, [22]), transportation 
(Yu and Lin, [23]) and banking industries 
(Maghyereh and Awartani, [24]), however, 
application of DEA to high-tech, especially to 
ICPT, seems relatively few. Secondly, there 
exists at least one shortcoming in the aspect of 
variable selection in previous researches. As 
mentioned by Golany and Roll [25], introduction 
of too many, especially redundant, variables 
oftentimes tend to shift the compared units 
toward the efficiency frontier, resulting in 
relatively large number of units with high 
efficiency scores. Thus, before conducting the 
DEA-based analysis, one needs to check and 
select variables very carefully. Some variables 
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such as growth rate, net profit after tax, 
profitability ratio, and output value by employee 
in Liu and Wang [12], may be repeating virtually 
the same or similar information, thus should not 
be included in the analysis simultaneously. 
Finally, the traditional DEA models neither take 
into account statistical noise nor allow hypothesis 
testing, and the DEA method often overestimates 
the technical efficiency of firms under study. 
However, scarce researchers paid their attention 
on the application BDEA to performance 
evaluation for ICPT industry. To fill this gap, we 
thus employ BDEA to estimate bias-corrected 
technical efficiency and derive the confidence 
interval of efficiency for the 24 ICPT firms. The 
methodologies used in this analysis, including 
TDEA and BDEA models will be elaborated in 
the following section. 
 
3. METHODOLOGY 
 
3.1 DEA Models 
 
In production economics context, production 
technology can be represented by the production 
possibility set containing all feasible input and 
output vectors: T={(x,y)∣x can produce y}. That 
is, one can define output set P (x) as P (x) = 

{y∣(x,y) T∈ }. Or, alternatively, one can define 

input set L (y) as L (y)= {x:∣(x,y) T∈ }, where x 

= (x1, x2,…,xm)
mR+∈ , and y = (y1, y2,…,yk) 

kR+∈ . 
Both P (x) and L (y) are closed and bounded, 
and satisfy strong disposability. Once the output 
set (or input set) has been defined, the efficiency 
can be measured by the distance from observed 
data point to the best practice (frontier), which 
can be solved by using linear programming 
technique. Assume that there are J decision-
making units (DMUs) to be evaluated, J={1,…,J}, 
each DMU produces K outputs K={1,…,K}, by 
utilizing M inputs, M={1,…,M}. The output-
oriented CCR DEA model can be written as 
follows (Charnes, et al. [2]). 
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Where, λ  is scalar and iφ/1  is the efficiency of 
DMUi to be estimated, x and y denote the input 
and output variables, respectively. The objective 
of model (1) is to find the maximal output 
expansion ratio, keeping all inputs unchanged. 
The iφ  is calculated by solving model (1) once 
for each firm in the sample. The model (1) 
implicitly assumes that all DMUs produce their 
outputs under the situation of constant returns to 
scale, which may not be in line with the actual 
practice of production; Banker, Charnes, and 
Cooper (BCC, [3]) thus relaxed the assumption 
by adding an extra convexity constraint, that is, 

∑ = 1λ , into the model (1). The model then 

becomes: 
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 (2) 
 
Once the technical efficiency scores based on 
model (1) and (2) have been calculated, the 
scale efficiency, (SE) can be obtained by dividing 
objective of model (2) by that computed from 
model (2), that is, CCRBCCSE φφ /= , SE = 1 
indicates scale efficient and SE < 1 represents 
scale inefficient. In the case of scale inefficient, it 
can be further classified into increasing returns to 
scale (IRS) and decreasing returns to scale 
(DRS) by observing the summation of λ  
obtained from model (1), the DMU under 
estimated will exhibits IRS (DRS) if summation of 
λ  is less (greater) than unity. For more detail, 
refer to Banker [26]. 
 
3.2 Bootstrap DEA Method 
 
Both CCR and BCC models are attributed to 
deterministic estimators which are based on a 
finite sample of observed production units, the 
corresponding measures of efficiency scores are 
sensitivity to the sampling data, Simar and 
Wilson [4] thus proposed a general methodology 
of bootstrapping in nonparametric frontier models 
by following the concept developed by Efron [7]. 
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The method proposed by Simar and Wilson [4] is 
based on the idea of resampling a lot of times 
and applying the DEA estimator to each of 
resampling data sets so that one can mimic the 
sampling distribution and the resulting efficiency 
scores seem more precise and reliable. In this 
paper, we attempt to estimate technical efficiency 
obtain the confidence intervals of efficiency for 
24 IC packaging and testing companies, we thus 
apply bootstrap method by following Simar and 
Wilson [4], which can be described as follows. 
 
In general the production possibility set T, output 
set P (x), and the best practice (or frontier) 
mentioned in subsection 3.1, are unknown, but 
one can still obtain the BCC technical efficiency 
scores by observed data and using model (2), 

denote the efficiency by ),...,2,1(,ˆ Jjj =φ . By 

using some data generating process (DGP), one 
can generate a random sample output set P* (x) 
and obtains the corresponding measure of 
efficiency. Repeat the procedure B times and 
denote the bootstrapping DEA efficiency score by 

*
,

ˆ
bjφ  ( b =1,2,…, B , ),...,2,1 Jj = . Note that *

,
ˆ

bjφ  is 

generated from ),...,2,1(,ˆ Jjj =φ as follows, for 

more detail refer Simar and Wilson [4]. 
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observed output data, and  
),...,,( 21 JxxxX =  is m×J matrix of observed 

input data. 
,λ (J×1) vector of intensity variables for all 

DMU, 
+s (s×1) vector of output slack variables, 
−s (m×1) vector of input slack variables. 

f. Until b=B, repeat steps (a)-(f) to provide 
for j=1,2,…,J, a set of bootstrapped 

efficiency scores, { }Bbb ,...,2,1,*
,j =φ  

 
The estimated bias, jbias of the DEA efficiency 
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Where,  jφ̂  is the jth DMU’s DEA efficiency score 

calculated from model (2), 
*
,

ˆ
bjφ

 be the b th 

bootstrap DEA efficiency for the jth DMU, and B  
is the number of bootstrap replications. 
 
The bias-corrected DEA efficiency for the jth DMU 

( jφ~
) is  

 

jjj bias−= φφ ˆ~
                                           (4) 

 

The standard error of jφ̂  may be estimated by 
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The percentile method (Efron and Tibshirani, [8]) 
is the most straightforward method to obtain the 
bootstrap confidence intervals, which is based on 

the empirical cumulative distribution function 
^
Gof 

*

,

~

bkφ . The (1-2α) percentile confidence interval is 

given by (
)-(1*

,

~)(*

,

~
,
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,

~ α
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α percentile of 
^
G. 

 

4. EMPIRICAL ANALYSIS 
 
4.1 The ICPT Industry  
 
In the recent several years, ICPT industry 
becomes more and more important because                       
of substantial growth of communication                          
and consumer electronic products. In addition, 
due mainly to curtailing the cost, the                      
integrated device manufacturers are tending                         
to outsource their IC package and test,                   
including design and manufacturing businesses 
to service providers in the world. As a 
consequence, the ICPT industry has grown 
significantly in terms of revenue in the year of 
2011. Table 1 indicates the ranking, revenue and 
market share of top 20 firms in the world in 2011. 
As one can see from Table 1, ASE, SPIL, and 
Powertech (all headquartered in Taiwan) are 
ranked top 1, 3, and 5, respectively, while Amkor 
(American based firm) is ranked as number 2 in 
the world.  
 
4.2 The Data 
 
As we mentioned in previous section, when 
employing DEA to measure the relative efficiency 
of decision making units (DMU), it is very 
important to determine the input and output 
variables to be included in the analysis. A DMU 
converts the resources to produce outputs, as 
such all inputs and outputs should be included in

Table 1. Rank and revenue of ICPT firms in 2011 (Source: IEK [27]) 
 

Rank Company Region Revenue Market share 
1 ASE Taiwan 4,252 17.7% 
2 Amkor Technology United States 2,776 11.6% 
3 SPIL Taiwan 2,024 8.4% 
4 STATS ChipPAC Singapore 1,707 7.1% 
5 Powertech Technology Taiwan 1,252 5.2% 
6 UTAC Singapore 981 4.1% 
7 ChipMOS Technologies Taiwan 620 2.6% 
8 Jiangsu Changjiang Electronics 

Technology 
China 611 2.5% 

9 J-Devices Japan 565 2.4% 
10 Chipbond Technology Taiwan 441 1.8% 
11 STS Semiconductor South Korea 428 1.8% 
12 Formosa Advanced Technologies Taiwan 404 1.7% 
13 King Yuan Electronics Taiwan 385 1.6% 
14 Unisem Malaysia 380 1.6% 
15 Carsem Semiconductor Malaysia 360 1.5% 
16 Greatek Taiwan 290 1.2% 
17 Walton Advanced Engineering Taiwan 260 1.1% 
18 AOI Electronics Japan 257 1.1% 
19 Nantong Fujitsu Microelectronics China 251 1.0% 
20 Signetics South Korea 250 1.0% 
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the analysis (Boussofiane et al. [28]). In order to 
producing the packaging and testing services, 
some special equipment are in general needed, 
especially for testing process. In other words, 
ICPT is commonly attributed to capital-intensive 
industry. We thus choose the total assets as one 
of input variable. Based on some previous 
studies and in line with underlying of production 
economics, the number of employees and 
operating expenses are selected as two 
additional input variables. As for the output, the 
ICPT firms in general produce two outputs, 
namely: Packaging and testing, however, the 
quantities of the two outputs are not available. In 
such case, the company’s gross sales would be 
a good proxy for representing production of firm’s 
packaging and testing operations, therefore is 
included in the analysis. Table 2 shows the 
definition and unit of each input and output 
variables. 
 

Our data set is drawn from 2010 annual report 
published online by each of sampling companies. 
Note that when applying DEA to evaluate the 
efficiency, the DMU under consideration should 
be homogeneous. In this study we attempt to 
analyze the efficiency for worldwide ICPT 
industry, we thus choose 24 firms as our sample. 
All of these firms provide both packaging and 
testing services globally. Of which 16 firms come 
from top 20 companies listed in Table 1. Those 
firms without complete operation data, such as 
UTAC, J-Devices, Carsem, and Signetics, are 
excluded from our data set. To make comparison 
sense, we thus enhance our data set by adding   
8 companies; all are listed in Taiwan                          
stock market. As a result totally there are                        
24 DMUs in our data set. Although we do                        
not include all firms in the world’s ICPT                    
industry, these 24 firms in fact took a large                     
share of the entire industry – over 81 percent                       
in terms of gross sales of global industry                       
in the sampling year which is sufficiently                     
large to represent the entire ICPT industry                           
in the world. Table 3 summarizes the                   

descriptive statistics of the data, including three 
inputs and one output. From Table 3 one                          
can easily find that the data are rather 
heterogeneous. Taking total assets as an 
example, the data ranges from 68 to 5,548 
million US dollars, and the standard deviation is 
1,251 million US dollars. It reveals that the 
operating scales of each firm are quite varied; 
thus we must consider the effects of scale on the 
variation of efficiency. 
 
Furthermore, since DEA approach initiated by 
Farrell [29] and developed by Charnes et al. [2] 
and Banker et al. [3] is based on the underlying 
theory of production economics, therefore the 
inputs and outputs included in DEA analysis 
should satisfy the condition of isotonicity. The so-
called isotonicity is the requirement that the 
relationship between inputs and outputs should 
not be exotics. Increasing the amount of any 
input while keeping other factors constant should 
not decrease any output but instead should lead 
to an increase in at least one of outputs. This can 
be investigated by conducting the calculation of 
all inter-correlation between inputs and outputs. 
The results are displayed in Table 4, from which 
we see that positive and significant correlations 

at level of significance, 05.0=α , so that the 
condition of isotonicity is satisfied and the 
inclusion of inputs and output in our analysis is 
justified. 
 
4.3 The Results  
 
We estimate efficiency scores for 24 world’s 
ICPT firms by both TDEA models and BDEA 
methods. The former is performed by utilizing the 
EMS software, developed by Scheel [31]; while 
the latter is carried out by FEAR, developed by 
Wilson [32]. The results are indicated in Table 5 
(TDEA models) and Table 6 (BDEA model). 
Based on the results and further analysis, some 
important findings are summarized and 
discussed as follows. 

 

Table 2. Definition of input and output variables 
 

Catogories Variable Units Definition 
Input Total assets Million US 

dollars 
The sum of all cash, investments, furniture, fixtures, equipment, 
receivables, intangibles, and any other items of value owned by a 
person or a business entity. 
 (Source: [30]) 

Number of 
employees 

People workers hired by each company. 

Operating 
expenses 

Million US 
dollars 

 An ongoing cost for running a product, business, or system, with 
exclusion wage and salary. 

Output Gross sales Million US 
dollars 

 The sum of all sales during a time period 
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Table 3. Descriptive statistics of input and output variables 
 

Variable     Gross sales Number of employees Total assets Operating expenses 
Max 4,222 19,900 5,548 3,207 
Min 68 246 68 104 
Mean 756 5,183 1,015 598 
S.D. 1,016 5,493 1,251 783 

Note: units for each of variables are same as in Table 2 
 

Table 4. Correlation coefficient of input and output variables 
 

      Number of employees Total assets Operating expenses Gross sales 
Number of employees 1    
Total assets 0.84 1   
Operating expenses 0.88 0.97 1  
Gross sales 0.89 0.98 1 1 

 

4.3.1 TDEA 
 

From Table 5, one can see that based on the 
assumption of CRS the average efficiency of 24 
ICPT companies is 1.206, implying that on 
average all firms should expand their output by 
20.6 percent keeping all inputs unchanged so as 
to be efficient. 5 DMUs, Amkor, Powertech, STS, 
Unisem, and Xintec are evaluated as technically 
efficient. Meanwhile remaining 19 firms are 
attributed to be inefficient, of which the most 
inefficient DMU is Nantong Fujitsu with efficiency 
score 1.587, followed by ChipMOS, Walton 
Advanced, OSE, and SPIL. 
 

Also from Table 5, when using the BCC model 
which is based on the assumption of VRS, 8 
DMUs, Amkor, Powertech, STS, Unisem, Xintec, 
ASE, Stack Devices and Aptos are evaluated as 
efficient, while remaining 16 firms are inefficient 
with scores ranging from 1.007 to 1.457. The 
most inefficient company is Nantong Fujitsu with 
efficiency score of 1.457; followed by ChipMOS 
(1.438), OSE (1.354), and Walton Advanced 
(1.310). On average the efficiency score of 
sampling ICPT firms is 1.134. The policy 
implication is that those inefficiency DMUs 
should increase their output by 13.4 percent, 
taking all firms as a whole. 
 

As for the scale efficiency, from Table 5 one can 
easily see that the average scale efficiency score 
is 0.947. 5 DMUs, Amkor, Powertech, STS, 
Unisem, and Xintec produce their output under 
constant returns to scale or optimal scale size. 6 
(13) of remaining 19 scale inefficient DMUs are 
attributed to increasing (decreasing) returns to 
scale. It should be noted that, those DMUs 
attributed to decreasing returns to scale are in 
general larger scale firms in terms of total assets. 
Since DEA is a powerful method to measure the 
operating efficiency and detect the source of 
inefficiency, therefore, for those evaluated as 

scale inefficient firms, one of possible avenues 
for improving performance is to adjust their 
production size. Taking SPIL as an example, the 
aggregate efficiency (CCR) is 1.354 and pure 
technical efficiency (BCC) is 1.149, resulting in 
the scale efficiency of 0.849 (=1.149/1.354), 
which is due to decreasing returns to scale. Our 
empirical result indicates that its aggregate 
inefficiency comes from both technical and scale. 
Therefore, the possible way for improving 
performance is downsizing production scale, in 
addition to adjusting manufacturing processes. 
 
To examine the effect of scale on efficiency, the 
samples are classified into two categories by 
total assets, namely larger and smaller groups. 
By using cluster analysis and R software, the 
result indicates that DMU 1 to DMU 5 can be 
attributed to larger group while the others are 
ascribed to smaller one. In general, those firms 
with total assets greater than USD 1,500 billion 
are attributed to larger category. The average 
technical efficiencies of larger and smaller 
groups based on the assumption of VRS are 
1.048 and 1.160, respectively. The result of t-
ratio test reveals that the null hypothesis of no 
efficiency difference can be rejected with 5% 
level of significance, that is, on average the 
technical efficiency of larger firm is significantly 
higher than that of smaller one. This finding is 
consistent with underlying theory of economics 
and the fact of larger firms in general with 
competitive advantage due to scale effect. 
 
As mentioned earlier, Taiwan’s ICPT firms play a 
very important role in the global industry, to 
investigate whether Taiwan’s firms are more 
efficient than non-Taiwan’s firms, we thus classify 
the samples into two groups. Based on the 
assumption of VRS, the average pure technical 
efficiency of Taiwan’s firm is 1.14, while for non-
Taiwan is 1.13. The result of t-ratio test indicates 
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that the null hypothesis of no difference between 
the two groups cannot be rejected. 
 

4.3.2 BDEA 
 
In this study, we adopt FEAR [32] to estimate 
BDEA efficiency of 24 worldwide ICPT firms. 
FEAR is based on the general-purpose statistical 
package R and can be downloaded freely from 
Wilson’s website. By resampling 2000 times, the 
bias, bias-corrected efficiency scores, standard 
deviation, and confidence interval can be 
obtained and are indicated in Table 6. Based on 
Table 6, some further discussions are described 
as follows. Note that the second column in Table 

6 shows the BCC efficiency ( jφ̂ ) for the purpose 

of comparison. 
 

The column 3 and column 4 in Table 6 display 
the bias of efficiency and bias-corrected technical 
efficiency, respectively. As shown in Table 6, the 
average bias for the 24 samples is -0.0879 in 
comparison with average BCC efficiency score, 
and the average bias-corrected technical 
efficiency score is 1.2223, indicating that the 
efficiency evaluated by BCC DEA model will be 
in general overestimated. In contrast with 8 
DMUs are evaluated as technically efficient in 
BCC analysis, all of 24 firms will be inefficient 
after bias-correcting. Taking ASE as an example, 
the efficiency will be 1.1256 when bootstrapping 

while it is evaluated as efficient in BCC analysis. 
Note that, it is not necessary to keep the same 
efficiency ranking in bootstrap as in BCC model. 
For example, the technical efficiencies of Stack 
Devices and TICP are respectively 1 and 1.007 
in BCC DEA analysis, while their efficiencies 
become 1.1268 and 1.0799 after the bias-
correcting. The analysis reveals that, neglecting 
the bias will generally lead to the different results 
from that with consideration of bootstrapping bias. 
 
The efficiencies estimated by BDEA method for 
each DMU construct a distribution, rather than a 
deterministic value in DEA analysis. Based on 
the results of resampling 2000 times, the 90% 
confidence interval of each firm can be obtained 
and displayed in Table 6 (column 6 and 7). For 
example, the bias-corrected efficiency score of 
ASE is 1.1256 and the 90% confidence interval 
would be from 1.0055 to 1.3249 with standard 
deviation of 0.0082. At the aggregate level, the 
average bias-corrected efficiency of 24 firms 
would be 1.2223, implying that taking all 24 
samples as a whole it should expand output by 
22.23 percent or 3.3 billion US dollars while 
keeping all inputs unchanged, so as to achieve 
efficient. For comparison, the output shortages 
of24 firms based on BCC and BDEA are 
indicated in Table 7, from which one can see that, 
the efficiency will be overestimated, and output 
shortage will be underestimated in BCC analysis. 

 

Table 5. The results of traditional DEA analysis 
 

DMU Firm CRSTE VRSTE SE Scale economy 
1 ASE 1.002 1.000 0.998 DRS 
2 Amkor 1.000 1.000 1.000 CRS 
3 SPIL 1.354 1.149 0.849 DRS 
4 Stats ChipPAC 1.217 1.093 0.898 DRS 
5 Powertech 1.000 1.000 1.000 CRS 
6 ChipMOS 1.583 1.438 0.908 DRS 
7 Jiangsu Changjiang 1.297 1.136 0.876 DRS 
8 Chipbond 1.266 1.115 0.881 DRS 
9 STS 1.000 1.000 1.000 CRS 
10 Formosa Advanced 1.264 1.233 0.975 DRS 
11 King Yuan 1.347 1.169 0.868 DRS 
12 Unisem 1.000 1.000 1.000 CRS 
13 Greatek 1.245 1.176 0.945 DRS 
14 Walton Advanced 1.393 1.310 0.940 DRS 
15 AOI 1.231 1.219 0.990 IRS 
16 Nantong Fujitsu 1.587 1.457 0.918 DRS 
17 OSE 1.389 1.354 0.975 DRS 
18 Lingsen 1.237 1.234 0.998 DRS 
19 Sigurd 1.193 1.189 0.997 IRS 
20 Tong Hsing 1.087 1.007 0.926 IRS 
21 TICP 1.058 1.008 0.953 IRS 
22 Stack Devices 1.092 1.000 0.916 IRS 
23 Aptos 1.092 1.000 0.916 IRS 
24 Xintec 1.000 1.000 1.000 CRS 
  mean 1.206 1.134 0.947   
Note: CRSTE, VRSTE stand for technical efficiency under assumption of CRS, VRS, respectively, SE denotes scale efficiency 
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Table 6. The result of bootstrap DEA 
 

Firm 
jφ̂  Bias Bias- corrected S.D. Confidence Interval 

5% 95% 
ASE 1.0000 -0.1256 1.1256 0.0082 1.0055 1.3249 
Amkor 1.0000 -0.1219 1.1219 0.0075 1.0042 1.3077 
SPIL 1.1613 -0.0785 1.2398 0.0023 1.1665 1.3497 
Stats ChipPAC 1.0957 -0.0620 1.1577 0.0014 1.1024 1.2472 
Powertech 1.0000 -0.0839 1.0838 0.0027 1.0061 1.2082 
ChipMOS 1.3757 -0.0679 1.4436 0.0012 1.3835 1.5185 
Jiangsu Changjiang 1.1463 -0.0545 1.2008 0.0007 1.1520 1.2618 
Chipbond 1.1249 -0.0484 1.1733 0.0005 1.1294 1.2207 
STS 1.0000 -0.1239 1.1239 0.0079 1.0056 1.3226 
Formosa Advanced 1.2576 -0.0785 1.3361 0.0015 1.2642 1.4122 
King Yuan 1.1819 -0.0505 1.2323 0.0006 1.1873 1.2847 
Unisem 1.0000 -0.1241 1.1241 0.0078 1.0055 1.3243 
Greatek 1.1904 -0.0730 1.2634 0.0013 1.1956 1.3335 
Walton Advanced 1.3566 -0.0840 1.4406 0.0024 1.3643 1.5422 
AOI 1.1857 -0.0815 1.2672 0.0022 1.1923 1.3678 
Nantong Fujitsu 1.5227 -0.0975 1.6202 0.0030 1.5292 1.7381 
OSE 1.3757 -0.0899 1.4656 0.0023 1.3813 1.5603 
Lingsen 1.2311 -0.0839 1.3150 0.0028 1.2377 1.4305 
Sigurd 1.0096 -0.0713 1.0809 0.0029 1.0121 1.2075 
Tong Hsing 1.0040 -0.0666 1.0706 0.0015 1.0094 1.1578 
TICP 1.0070 -0.0729 1.0799 0.0019 1.0131 1.1767 
Stack Devices 1.0000 -0.1268 1.1268 0.0079 1.0067 1.3259 
Aptos 1.0000 -0.1235 1.1230 0.0077 1.0054 1.3186 
Xintec 1.0000 -0.1199 1.1199 0.0061 1.0044 1.2616 
Mean 1.1344 -0.0879 1.2223 0.0035 1.1402 1.3418 

 
Table 7. output shortage for 24 companies based on different models 

 
Firm              BCC DEA            BCC BDEA 

Shortage % Shortage % 
ASE 0 0 516.6 12.2 
Amkor 0 0 362.9 12.3 
SPIL 307.2 14.9 502.5 24.4 
Stats ChipPAC 156.1 9.3 266.3 15.9 
Powertech 0 0 106.1 8.4 
ChipMOS 219.4 41.5 222.4 44.4 
Jiangsu Changjiang 78.99.1 13.6 117.1 20.2 
Chipbond 49.5 11.5 74.8 17.4 
STS 0 0 61.4 12.3 
Formosa Advanced 94.6 23.3 135.5 33.4 
King Yuan 82.6 16.9 114.1 23.3 
Unisem 0 0 56.5 12.3 
Greatek 61.6 17.6 92.0 26.3 
Walton Advanced 81.5 31.0 115.5 43.9 
AOI 54.3 21.9 65.7 26.5 
Nantong Fujitsu 126.1 45.7 171.4 62.1 
OSE 133.5 35.4 175.3 46.5 
Lingsen 51.2 23.4 68.9 31.5 
Sigurd 30.2 18.9 13.0 8.1 
Tong Hsing 1.5 0.7 14.2 6.8 
TICP 1.2 0.8 12.0 7.9 
Stack Devices 0 0 8.5 12.5 
Aptos 0 0 11.5 12.4 
Xintec 0 0 22.2 11.9 
Total 1529.5  3306  
mean 95.6  137.8  

Note: unit in the column of shortage is in million US dollars 
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5. CONCLUDING REMARKS 
 
Due to quick recovery of the global economy and 
substantial growth of smart phones, and other 
portable electronic devices, the output value of 
world’s ICPT reached 47 billion U.S. dollars in 
the year of 2010; this means that the ICPT plays 
an important role in the supply chain of electronic 
devices. As such, the operating efficiency for 
ICPT worldwide firms deserves in-depth 
investigation. In this paper we evaluate the 
technical and scale efficiencies for world’s 24 
ICPT firms. The empirical results indicate that, 8 
DMUs including ASE, Amkor, Powertech, STS, 
Unisem, Stack Devices, Aptos, and Xintec are 
evaluated as technically efficient, based on the 
assumption of VRS. The mean technical 
efficiency of sampling DMUs is 1.134, implying 
that on average each of inefficient firm should 
expand their output (Gross sales) by 1.53 billion 
dollars, keeping all inputs unchanged so as to be 
efficient. Recently, outsourcing from such 
integrated device manufacturers as Intel, TI, 
Motolora, will be the good opportunity to increase 
their output for ICPT firms. 
 
To investigate the effect of scale on efficiency,     
we further classify the sample into two      
categories in terms of total assets and by cluster 
analysis. The average technical efficiencies                    
of larger and smaller groups are 1.048 and   
1.160, respectively. The result of t-ratio test 
reveals that the null hypothesis of no efficiency 
difference cannot be accepted with 5% level of 
significance. We thus conclude that, on average 
the technical efficiency of larger firm is 
significantly higher than that of smaller one. The 
finding is in line with the fact of larger firms in 
general with competitive advantage due to scale 
effect. 
 
As for the scale efficiency, the empirical results 
also show that, 5 firms, including Amkor, 
Powertech, STS, Unisem, Xintec, produce their 
output under optimal production scale. Of 
remaining companies, 13 (6) DMUs exhibit DRS 
(IRS), indicating that it is necessary to adjust 
production scale for these 19 companies so as to 
be scale efficient. 
 
Since the technical efficiencies are in general 
overestimated in traditional DEA models, we         
thus employ bootstrap DEA method proposed                
by Simar and Wilson [4]. The results indicate      
that none of sampling DMU is evaluated             
as technically efficient and the average                   
bias-corrected efficiency is 1.2223 which is 

obviously lower than those estimated by                     
BCC model. Taking ASE as an example, it is 
evaluated as efficient based on BCC model, 
while its bias-corrected efficiency becomes 
1.1256 when using BDEA method due to the 
existence of bias. 
 
Since the ICPT is a high-tech industry, in addition 
to scale effect, there may be some other factors 
such as R&D expenses, the number of patents 
owned by each firm, which may also significantly 
influence firms’ technical efficiency, thus 
investigating the possible influencing factors, 
including internal and external, deserves to 
further research. Moreover, as we mentioned 
earlier the ICPT companies generally consist of 
two production divisions, namely packaging and 
testing, each division in fact produces its 
production by using different technologies; 
therefore one of possible avenues for future 
study is to evaluate performance for ICPT 
industry by using Network DEA models 
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