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Abstract

The main aim of this paper is to propose a numeri¢agmtion method using polynomial interpolatipn
that provides improved estimates as compared to the Newtas-@mthods of integration. The methiod
is an extension of trapezoidal rule where the Lagrangepiiteion is employed when fitting polynomia|ls
after segmentation. We proved that the proposed numerical inbegnaethod using polynomigl
interpolation provided an improved formula for numerical intégna The proposed method using

polynomial interpolation gave better estimates as cordpdaoe some Newton-Cotes methods |of
integration.

Keywords: Numerical integration; polynomial interpolation; NemABotes methods; relative error.
1 Introduction

Integration is a way of assessing the area under a dungtotted on a graph. The application of humerical

integration has several application in various fields saghktatistics, actuarial science, engineering finance,
etc. [1,2,3,4,5].

*Corresponding author: E-mail: kwasidarkwah88@yalemn;



Darkwah et al.; BIMCS, 16(2): 1-11, 2016; Article.BIMCS.25299

The approximation of general functions by simple classefsiraftions has many applications as well as
theoretical implications (page 183 in [6]). The approximatbmumerical values that cannot be integrated
analytically is referred to as numerical integration lyrdadn (page 1 in [7]). Various methods of numerical
integration such as Gauss Quadrature, Newton- Cotes,eMoentio integration and Romberg are mostly
employed to compute those functions that are not easégriated. Numerical integration has been used in
several areas of science such as biostatistics toastiseveral distribution functions and quantiles and in
economics to estimate the Lorenz curve when computing thiec@efficient of income [8]. Using Bayesian
methods, numerical integration is recently employed in asitig likelihoods and posterior distributions [9].
In the era of modern computers, approximation via interpolatandmerged as a general paradigm for
computing elementary functions as part of typical esyssoftware on current computers [10]. Scott [6]
stated that the earliest applications of interpolation simply to link scattered data to provide some sense
of what a continuum representation might look like. Taylmorem in calculus provides a polynomial
approximation to sufficiently smooth function [11]:

- 190)
- VAN
R.(X) = ZT(X %) )
k=0 :
Taylor theorem is very powerful and requires knowing the valtibggh-order derivatives off to construct
Pn(X) Interpolation is a more distributed approximation that do¢senuire derivatives, only the values
of f (page 203 in [6]).

Interpolation addresses the approximation of a functiontwisi&nown through its nodal values to make it
easier to integrate or differentiate. Giver1 pairs(X, ¥ ), interpolation consists of identifying a function

P(X) such thatP(x) = f(x)fori=0,1,....m with f(x) being some values given, then we can
conclude thatP(X) interpolatesP(x) = f(X) at the nodesx (page 327 in [12]). There are several types

of interpolation. They are Polynomial interpolation, Trigowedric interpolation and Spline or Piecewise
polynomial interpolation. Polynomial interpolatiois derived if P(X) is an algebraic polynomial,

trigonometric interpolation ifP(X) is a trigonometric polynomial or piecewise polynomigerpolation (or
spline interpolation) ifP(X) is only locally a polynomial. The numbeR3(X%) = f(X) may represent the

values attained at the nod¥s by a function f (X) that is known in closed form, as well as experimental
data [12]. The primary goal of approximation is to provideommgact representation of the available data,
whose number is often quite large. For polynomial imikegion, we considen +1 pairs(xi, yi) in other

to find a polynomialP(X) such that

P(x)=3g,X"+..+ax+ a= f( ¥, F0,1,2,...,r 2

There are several forms of Polynomial interpolation.yTaee linear, Quadratic and Lagrange polynomial
interpolation.

The Linear polynomial interpolation is the simplestnfioof interpolation in the form of a straight line,
connecting two points. Considering two known data pdixgs Y,)and (x ,Y, ), there exist a unique

straight line passing through these points. The formula firaight line can be written B{X) = g, + g x.

Using the linear polynomial interpolation to wrl%( X), we have
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R =225 £(x)+ 2= f(x) @3
X=X X~ X%
(% = X) T(x%)+(x= %) f( %)
X~ X%

— X~ %
=f + f(x)-f
O+ 100 = 100)]

_ f(xl)—f(xo)J _
R(X) = f(x)+ —2——=22
(%) (%)( — (x= %)

The Quadratic polynomial interpolation satisfieB,(X) = y,i=0,1,2 for given data points
(%01 Yo)s (% W), (%, o).
Here there exist a unique quadratic curve passing througk tfants. The formula for a quadratic curve

can be written aE’z(X) =gtaxta X. Using the quadratic polynomial interpolation to wr@(x) ,
we have

R = f06) L(Y+ f(x) L3I+ (%) L X )

With
= (xX=x)(x= %) _ _(xX=%)(x= %) _ (e %) ¥
Lo(x) = , = . =

) (% =)0~ %) =0 (%= %)( %= %) -0 (%= R % X ®
The formula in (2) is called Lagrange’s form of the inteagion polynomial.
The Lagrange interpolant is defined by

R(I=Y TOL(3 ®

where Nin P,(X) stands for the order polynomial that approximates the famgfi= f(X) given at
=OX—X .
N+1 data points a§X,, ¥,), (X, Y0)s--- (X , ¥ Jand L;(X) = I_I —)&, i=0,1,2,..n

k=0,kzi X ~
where eachL; (X) is the Lagrange Polynomial.

The Newton-Cotes formula is a frequently used interpolatoction that employs Lagrange interpolating

(b-4a)
n

when fitting polynomials. Letting, = &, X, = band h= , the Newton-Cotes methods are derived

(b-a)i
n

by integrating p(X) over[ a,lci and choosing;, = a+ . That is
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fp(x)dx:i [0 %dx =0,1,2,...,n

a i=0 | % k=0,kzi &

When n =1, we have a simple trapezoidal rule of [13]
_h
Ay =S [100)+ 1()]
When n = 2, it gives the Simpso% rule of [13]

As= [ 106) +41(x)+ f(x)]

When n = 3, it gives the Simpsor% rule of [13]

A=) +3 1)+ 31(%)+ F(x)

Whenn =4, it gives the Boole’s rule of [13]

A =271 (x)+ 321 (x)+ 121 (6 )+ 320 (6 ) 71 )

Whenn =6, it gives the Weddle’s rule of [13]

Aﬁ:f_g[f()%)+5f(xi)+ f(x)+6 f(%)+ f(%)+5 f(x)+ f(x)

()

8

9

(10)

(11)

12)

Chasnov [14] and Yang, Cao, Chung and Morris ([15]) have explameddetails the Romberg rule,

Richardson’s extrapolation, Gauss quadrature, Euler methosbdiodth.

The main objective of this paper is to propose a numenitegration method using polynomial interpolation

that provides improved estimates as compared to the Ne®ates methods of integration.

2 Materialsand Methods

2.1 Proposed numerical integration formula using polynomial inter polation

Suppose the intervz[la, b] is subdivided intan(nl] z) equal interval length =E. Define X, by
n

x =a+ihi=0,1,2,...n .Thenx, = aandx, = b. Let f, = f(X),i =0,1,2,...n be the ordinate at

X (1=0,1,2,...n ) of the functionf. Suppose also that the interv%]g,)gﬂ],i: 0,1,2,..n- 1lis

t
divided into K equispaced pointsx +E h,t=1,2,... K :then the corresponding ordinates bfare given

by
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fo=1(x +%h),t=1,2,...,k i=0,1,2,..n— . Clearly when t=k,)§+Eh= X, and
|+E
f =f

. i+1.
i+—
k

Approximating the area under the curwe= f(X) from X=a to X=b, we employ Lagrange

interpolating when fitting polynomials [13]. Letting, = &, X, = band h= M , we have
n
F)=> F(x)R(¥ (13)
i=0
. ., (b-a)i . .
Integrating f (X) over[a, b] and choosingX = a+ N we have the proposed numerical integration
method
b n
A=[1=> wf(x) (14)
2 i=0
b X R X e
A =zj f(X ) ———+ f(x ) ———|dx i=0,1,2,...n;t= 1,2,...k(15)
=la I+T Xi+ﬂ'_ i+1 H—E )i(+1 B i+§'
k k k k
where the weighty, is determined by
b b X~ Xi+l X=X
W :j n(x dX=j 2+ 2_dx =0,1,2,...n;it= 1,2,...k (16)
a a X T X X T Xy

= i+ L 4+
2 2 2 2

The area under the curve for th%strip is estimated as [13]
. h k-1
A=—|f(x)+2> f, +f(x,) ] i=01..n- 1k= 1,2, 17)
2k =
Whenk =1, we have [13]
. _h
A=+ 1 (17a)

When k = 2, we have [13]



Darkwah et al.; BIMCS, 16(2): 1-11, 2016; Article.BIMCS.25299

A :2|:fi +21 ,+ fiﬂ} (17b)
2

When K =3, it becomes [13]
h
6 +§ |+73

Here we provide the proof fr=2. We can similarly derive the proof kf> 3. We have left out the proof
for the case ok =1 because it is the same as the Trapezium Rule [X8}, Mhen using interpolation,
whenk = 2 an estimate of the area of tH& strip under the curve is given by

2.1.1 Proof

, X=X . X=X 1
A = F(X () ——2—+ f(X ) ——2— |dx (18)
le PIUX G TX iy X - >,<L
"2 2 2 2 2
XHE X_X- 1 X_)ﬁ X1 X X_X. 1
A= IO+ (X )————|dx+ | | f(x ) f(x)——2 |
;[ )Q_XHE '% )$+g_)|( lel 1 )i(+1 X ' K1~ i)f_j.
2 "2 2 2
X=X 4 A X
- i "
A=100f 2 dxt f(xl)j — o
'+§ |+72
X1 _)g Xa1 X_X L
f(x ) 2 dx+ f(x,) 2 gy
|+1 J‘ i+} )g+1 1 _L +l )i(+}
2 2 2 2

h
Given h=Xx , = X = X,,— X , to be the interval length, then the new interval length lnell—z for
i+= i+=

k = 2. Substitutingu = —X+ X , into the first integral gives
i+>
2
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X=X,
'E

f(x)j “

1
|+—
2

dx= 1) | (- dy
SR

—f(x)j ) (dy) = f(x)
2

For the second integral after substituting= X— X is

dx— f(x

- il)j/zolu—

2

f(x 1>j~

For the third integral after substituting= —X+ X, is

f(x )m X7 Xa gy f(x ) (- dy
|+1 J.XH% XH%_XH 1 J. /2
h

= f(x, 1)j ") (d0=0x,);
2

For the fourth integral after substituting= X— X is
i+=

X=X 4
f(xﬂ)jf”4dx- () j R du= 1 %) 5
ThereforeTf(X)dX~ f()g) + f(X ) + f(X ) + f( ?gl)_
X
:Z FOx)+21(x 1)+ T(%)
Example

The exact method and the other numerical integration methatesl still be employed as an illustration to
estimate the integral below;

iO.O&X3dx
0
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Solution

Method 1: Exact (Numerical Integration)

3n
X
dx
n!

[0.08" dx= [ 0.08"
0 0 n=0

o 2 X3n
;O'Osl -

o0 23n+l
02, (3n+1)n!

n=0
4 7 0 7
=0.0 2+2—+ 2 + 2 + ..+ 2 + ..
4 7(2)) 10(3) 37(12)
=13.8426444

I
o

Now, estimating the integral of the function using severaherical integration methods such as the
Trapezium rule, Simpso% rule, Simpson% rule, Boole’s rule and Weddle’s rule, we select n=12

divisions of the interval [0,2] . Giveln:T :? =0.16667, the corresponding ordinates of
x =a+tihare f = 0.0%* (i=0,1,2,...,1Z as displayed in Table 1 in the appendix section.
Method 2: Trapezium rule

The estimate of the integral by the trapezium rulevsrgby

= 0-150071 4 2(0.0502+ 0.0518 + 51238 23.7197) 149.0}

:%[0.05+ 2(63.07114) 149.047

- 212169, 17.6807¢
12

Method 3: Simpson’s 3 rule

Using Simpson’s% rule, the estimate of the integral is given by

=_0'1§667[0.05+ 4(0.0502 0.056% 0.0892 0.2447 1.4612 237)+

2(0.0519+ 0.0672 0.1359 0.53b1 5.1288) 142%4)

=1—18[1+ 4(25.6217) 2(5.9139%) 149.04f

_263.4123_
18

14.6340z
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Method 4: Simpson's% rule
By the Simpson’s% rule, the estimate of the integral is

:3(0'1%%0.05+ 3(0.0502 0.0519 0.06A2 0.0892 0.2447 58
5.1238 23.719% 2(0.0567 0.1369 1.4642) 147

= %[u 3(29.8818) 2(1.6538) 149.04F

=—121'2254= 15.1282.

Method 5: Boole’s rule

Using Boole’s rule, the estimate is
:M)[7(0.05+ 149.04793 32(0.0502 0.0567 +.. 1.46123.72197)}+

45
12(0.0519- 0.1359 5.1238) 14(0.0672 0.5

:%[7(149.097% 32(25.6217% 12(5.3116) 14(0.89f

1935.75_
135

14.3388¢

Method 6: Weddle's rule

Using Weddle’s rule, the estimate is

= 3(0-16667) 5. 5(0.0502 0.2447) (0.0530 0.5351) 6(0.0561.4612)

10
(0.0672+ 5.1238) 5(0.0892 23.7197) 2(0.1369)9.0479

—%[o.oa 5(24.1038) 6(1.5179) 2(2.7188) 5.7780 916¥479

20

Method 7: Proposed Numerical Integration Method

Using the proposed numerical integration method, the vafdieX andx , and their corresponding
i+

y
ordinates f, = 0.0%* and f , =0.0% 2 are displayed in Table 1 in the appendix. For the proposed
i+=
2
numerical integration method, the values are baseld 8 sincek =1 is the same as the Trapezium rule.

An estimate of the integral using the proposed method wher2is given as follows
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:(0%667)[0.0& 2(0.0506- 0.0502 0.0568 +.. 57.13%5) 1499

= i[o.oa 2(103.7333) 149.04}

- 356.5644_ 14.856¢
24

Generally, wherk =8,9,...,20 the values for the Proposed Integration method using inteigolfr

2
evalua‘ringj‘O 0.0%" dx taking 12 divisions are given in Table 1.

Table 1. Estimates of the area using both classical and proposed numerical integration method with 12

divisions
I ntegration method Area Absolute Relative M
error error (%)

Exact (Numerical integration) 13.84264 -

Trapezium rule 17.68075 3.83811 27.72672 1
Simpson’s 1/3 14.63402 0.79138 5.716973 2
Simpson 3/8 15.12818 1.28554 9.286812 1
Boole's rule 14.33889 0.49625 3.584938 2
Weddle's rule 14.23869 0.39605 2.861087 2
Proposed Method when k=8 13.90725 0.06461 0.466746 3
Proposed Method when k=9 13.89371 0.05107 0.368933 3
Proposed Method when k=10 13.88401 0.04137 0.298859 3
Proposed Method when k=11 13.87684 0.03420 0.247063 3
Proposed Method when k=12 13.87138 0.02874 0.207619 3
Proposed Method when k=13 13.86713 0.02449 0.176917 3
Proposed Method when k=14 13.86376 0.02112 0.152572 3
Proposed Method when k=15 13.86104 0.01840 0.132923 3
Proposed Method when k=16 13.85881 0.01617 0.116813 3
Proposed Method when k=17 13.85697 0.01433 0.103521 3
Proposed Method when k=18 13.85542 0.01278 0.092323 3
Proposed Method when k=19 13.85411 0.01147 0.082860 3
Proposed Method when k=20 13.85299 0.01035 0.074769 4

*m = the number of significant digits at least cect
Source: Author’s research

3 Results and Discussion

From Table 1, the Proposed Numerical Integration methawjtisterpolation is compared to the various
numerical integration formulas using the relative errévsienk =1, the area under the curve is 17.68075

which gives the same result as the area under the curwg thsiriTrapezium rule. Also wheki =2 and
above, the estimates of the area under the curve aee thetn the Trapezium rule. Furthermore, when k = 3
and above, the estimates of the area under the curve age thatt the Simpso% and% rule. When

k =8 and above, the estimates of the area under the curve tmethah Boole and Weddle's rule. The
proposed method using interpolation with smaller divisionsi®fiiterval gives a better estimate with lesser

errors as compared to the Trapezium rule, Sim%orand % rule, Boole’s and Weddle’s rule.

4 Conclusion

This study proposes a numerical integration method using qoigh interpolations. The proposed
numerical integration method using polynomial interpotatvas used to estimate the area under a curve and

10
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has proven to be better than the classical methodsroérical integration such as Trapezium rule, Simpson
1/3 and 3/8 rules, Boole rule and Weddle rule.

Competing Interests

Authors have declared that no competing interests exist.

References

(1]
(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]
(12]
[13]

(14]

[15]

Burden RL, Fairs JD. Numerical analysi?.gd., Brooks/Cole Thomson, Pacific Grove, CA; 2001.

Canale R, Chapra S. Numerical methods for engineers:software and programming applications.
McGraw-Hill, New York; 2002.

Dickson DCM, Hardy MR, Waters HR. Actuarial mathematios life contingent risks. " ed.,
Cambridge University Press, New York; 2013.

Kaw A, Keteltas M. Lagrange Interpolation; 2009.
Available: http://numericalmethods.eng.usf.edu

Klugman SA, Panjer HH, Willmot GE. Loss models: Frontada decisions.™ ed., John Wiley &
Sons, Inc. Publication; 2004.

Scott LR. Numerical analysis. Princeton University Prasg1.
Gordon KS. Numerical integration. Encyclopedia of Biostiags ISBN: 0471975761; 1998.

Darkwah KA, Nortey ENN, Mettle FO, Baidoo I. A studf/the estimation of the Gini coefficient of
income using Lorenz curve. British Journal of MathematicsGomiputer Science. 2016;15(4):1-10.
Article no. BJIMCS. 24494, ISSN: 2231-0851.

Evans M, Swartz T. Methods for approximating integralsstiatistics with special emphasis on
Bayesian integration problems. Statistical Science. 1995H#-272.

Ren-Cang Li. Near optimality of Chebyshev interpolatior elementary function computations.
IEEE Transactions on Computers. 2004;53(6):678—687.

Turnbull HW. Numerical analysis. University of St. Andedames Gregory Tercentenary; 1939.
Quarteroni A, Sacco R, Saleri F. Numerical matheraaSpringer. ISBN 0-387-98959-2000.

Felix O Mettle, Enoch NB Quaye, Louis Asiedu, KwasiDarkwah. A proposed Method for
Numerical Integration. BJMCS. 2016 (In Press).

Chasnov TR. Introduction to numerical methods, lechotes for MATH 3311. The Hong Kong
University of Science and Technology; 2012.

Yang WY, Cao W, Chung TS, Morris J. Applied numerical metheohg Matlab. John Wiley &
Sons, Inc. Publication; 2005.

© 2016 Darkwah et al.; This is an Open Access krtitistributed under the terms of the Creative CamsnAttribution License
(http://creativecommons.org/licenses/byj4 ®Which permits unrestricted use, distributiondareproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be aceg$ere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/14296

11



