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Abstract 
 

The main aim of this paper is to propose a numerical integration method using polynomial interpolation 
that provides improved estimates as compared to the Newton-Cotes methods of integration. The method 
is an extension of trapezoidal rule where the Lagrange interpolation is employed when fitting polynomials 
after segmentation. We proved that the proposed numerical integration method using polynomial 
interpolation provided an improved formula for numerical integration. The proposed method using 
polynomial interpolation gave better estimates as compared to some Newton-Cotes methods of 
integration.  
 

 
Keywords: Numerical integration; polynomial interpolation; Newton-Cotes methods; relative error. 
 

1 Introduction 
 
Integration is a way of assessing the area under a function plotted on a graph. The application of numerical 
integration has several application in various fields such as statistics, actuarial science, engineering finance, 
etc. [1,2,3,4,5].  
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The approximation of general functions by simple classes of functions has many applications as well as 
theoretical implications (page 183 in [6]). The approximation of numerical values that cannot be integrated 
analytically is referred to as numerical integration by Gordon (page 1 in [7]). Various methods of numerical 
integration such as Gauss Quadrature, Newton- Cotes, Monte Carlo integration and Romberg are mostly 
employed to compute those functions that are not easily integrated. Numerical integration has been used in 
several areas of science such as biostatistics to estimate several distribution functions and quantiles and in 
economics to estimate the Lorenz curve when computing the Gini coefficient of income [8]. Using Bayesian 
methods, numerical integration is recently employed in estimating likelihoods and posterior distributions [9].  
In the era of modern computers, approximation via interpolation has emerged as a general paradigm for 
computing elementary functions as part of typical system software on current computers [10]. Scott [6] 
stated that  the earliest applications of interpolation was simply to link scattered data to provide some sense 
of what a continuum representation might look like. Taylor theorem in calculus provides a polynomial 
approximation to sufficiently smooth function [11]: 
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Taylor theorem is very powerful and requires knowing the values of high-order derivatives of f to construct

( )nP x . Interpolation is a more distributed approximation that does not require derivatives, only the values 

of f (page 203 in [6]). 

 
Interpolation addresses the approximation of a function which is known through its nodal values to make it 

easier to integrate or differentiate. Given m+1 pairs( , )i ix y , interpolation consists of identifying a function 

( )P x  such that ( ) ( ) for 0,1,...,i iP x f x i m= =  with ( )if x  being some values given, then we can 

conclude that ( )P x  interpolates ( ) ( )i iP x f x= at the nodes ix (page 327 in [12]). There are several types 

of interpolation. They are Polynomial interpolation, Trigonometric interpolation and Spline or Piecewise 
polynomial interpolation. Polynomial interpolation is derived if ( )P x  is an algebraic polynomial, 

trigonometric interpolation if ( )P x  is a trigonometric polynomial or piecewise polynomial interpolation (or 

spline interpolation) if ( )P x  is only locally a polynomial. The numbers ( ) ( )i iP x f x=  may represent the 

values attained at the nodes ix  by a function ( )f x   that is known in closed form, as well as experimental 

data [12]. The primary goal of approximation is to provide a compact representation of the available data, 

whose number is often quite large. For polynomial interpolation, we consider 1n+  pairs ( , )i ix y  in other 

to find a polynomial ( )P x  such that 
 

1 1 0( ) ... ( ), 0,1,2,...,m
i m i iP x a x a x a f x i n= + + + = =                             (2) 

 
There are several forms of Polynomial interpolation. They are linear, Quadratic and Lagrange polynomial 
interpolation. 
 
The Linear polynomial interpolation is the simplest form of interpolation in the form of a straight line, 

connecting two points. Considering two known data points0 0 1 1( , )and( , )x y x y , there exist a unique 

straight line passing through these points. The formula for a straight line can be written as1 0 1( )P x a a x= + . 

Using the linear polynomial interpolation to write1( )P x , we have 
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The Quadratic polynomial interpolation satisfies 2( ) , 0,1,2i iP x y i= =  for given data points

0 0 1 1 2 2( , ), ( , ), ( , )x y x y x y . 

 
Here there exist a unique quadratic curve passing through these points. The formula for a quadratic curve 

can be written as 2
2 0 1 2( )P x a a x a x= + + . Using the quadratic polynomial interpolation to write 2( )P x  , 

we have 
 

                              (4) 

 
With  
 

     (5) 

 
The formula in (2) is called Lagrange’s form of the interpolation polynomial. 
 
The Lagrange interpolant is defined by  
 

                                              (6) 

 

where in ( )nn P x   stands for the order polynomial that approximates the function ( )y f x=   given at 

 data points as 0 0 1 1( , ), ( , ),..., ( , )n nx y x y x y and 
0,

L ( ) , 0,1,2,...,
n

k
i

k k i i k

x x
x i n

x x= ≠

−= =
−∏  

 

where each  is the Lagrange Polynomial.  

 
The Newton-Cotes formula is a frequently used interpolator function that employs Lagrange interpolating 

when fitting polynomials. Letting0

( )
, n

b a
x a x b and h

n

−= = = , the Newton-Cotes methods are derived 

by integrating [ ]( )over ,p x a b  and choosing
( )

i

b a i
x a

n

−= + . That is 
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                                   (7) 

  
When 1,n =  we have a simple trapezoidal rule of [13] 
 

  
[ ]2 0 1( ) ( )

2

h
A f x f x= +

 
                                                         (8) 

 
When 2,n =  it gives the Simpson 1

3
 rule of [13] 

 

[ ]3 0 1 2( ) 4 ( ) ( )
3

h
A f x f x f x= + +                                              (9) 

 

When 3,n = it gives the Simpson 3
8

 rule of [13] 

 

[ ]4 0 1 2 3

3
( ) 3 ( ) 3 ( ) ( )

8

h
A f x f x f x f x= + + +                                                        (10) 

 

When 4n = , it gives the Boole’s rule of [13] 
 

                                              (11) 

 
When 6n = , it gives the Weddle’s rule of [13] 
 

[ ]6 0 1 2 3 4 5 6

3
( ) 5 ( ) ( ) 6 ( ) ( ) 5 ( ) ( )

10

h
A f x f x f x f x f x f x f x= + + + + + +                             (12) 

 
Chasnov [14] and Yang, Cao, Chung and Morris ([15]) have explained into details the Romberg rule, 
Richardson’s extrapolation, Gauss quadrature, Euler method and so forth. 
 
The main objective of this paper is to propose a numerical integration method using polynomial interpolation 
that provides improved estimates as compared to the Newton-Cotes methods of integration. 
 

2 Materials and Methods 
 
2.1 Proposed numerical integration formula using polynomial interpolation 
 

Suppose the interval [ ],a b   is subdivided into ( )n n z+∈  equal interval length
b a

h
n

−= . Define ix   by 

, 0,1,2,..., .ix a ih i n= + =  Then 0x a= and nx b= . Let ( ), 0,1,2,...,i if f x i n= =  be the ordinate at 

( 0,1,2,..., )ix i n=  of the function .f Suppose also that the interval [ ]1, , 0,1,2,..., 1i ix x i n+ = −  is 

divided into k  equispaced points  , 1,2,..., :i

t
x h t k

k
+ =  then the corresponding ordinates of f  are given 

by 

1

0
0 0,

( ) ( ) , 0,1,2,...,
xb nn

k
i

i k k i i ka x

x x
p x dx f x dx i n

x x= = ≠

 −= = 
−  

∑ ∏∫ ∫

[ ]5 0 1 2 3 4

2
7 ( ) 32 ( ) 12 ( ) 32 ( ) 7 ( )

45

h
A f x f x f x f x f x= + + + +
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 ( ), 1,2,..., ; 0,1,2,..., 1.t i
i

k

t
f f x h t k i n

k+
= + = = −  Clearly when 1, i i

k
t k x h x

k += + = and 

1.k i
i

k

f f ++
=  

 
Approximating the area under the curve ( )y f x=  from x a=  to x b= , we employ Lagrange 

interpolating when fitting polynomials [13]. Letting 0
( )

, n

b a
x a x b and h

n

−= = =  , we have 

 

0

( ) ( ) ( )
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i i
i

f x f x p x
=

≈∑                                                        (13) 

 

Integrating ( )f x  over [ ],a b  and choosing 
( )

i

b a i
x a

n

−= +  we have the proposed numerical integration 

method 
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where the weight iw  is determined by 

 

1
2 2

1 1

2 2 2 2

( ) , 0,1,2,..., ; 1,2,...,
t tb b i i

i i
t t t ta a

i i

x x x x

w p x dx dx i n t k
x x x x

−+ +

− −+ +

− −
= = + = =

− −∫ ∫              (16) 

 

The area under the curve for the 
thi strip is estimated as [13] 

 
1
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When 1k = , we have [13] 
 

[ ]*
12i i i

h
A f f += +                 (17a) 

 
When 2,k = we have [13] 
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4i i i
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 
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              (17b) 

 

When 3,k =  it becomes [13] 

 

*
1 2 1
3 3

2
6i i i

i i

h
A f f f f ++ +

  
= + + +  

   
                             (17c) 

 
2.1.1 Proof 
 

Here we provide the proof for 2k = . We can similarly derive the proof of 3k ≥ . We have left out the proof 

for the case of 1k =   because it is the same as the Trapezium Rule [13]. Now, when using interpolation, 

when 2k =  an estimate of the area of the thi  strip under the curve is given by 
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Given 1 1 1

2 2

i i
i i

h x x x x++ +
= − = −  to be the interval length, then the new interval length will be 

2

h
 for

2k = . Substituting 1

2
i

u x x
+

= − +  into the first integral gives 
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For the second integral after substituting isiu x x= −   
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For the third integral after substituting 1 isiu x x+= − +  

 

1

1

2

0
1

1 1
1 12 2

2
2

( ) ( ) ( )
( )2

i

i

x
i

xi i
hi

i

x x u
f x dx f x du

hx x

+

+

+

+ +
++

− −= −
− −∫ ∫  

                                              

2

1 1

2 20

( ) ( ) ( )
4( )2

h

i i

u h
f x du f x

h+ +
= =∫  

 

For the fourth integral after substituting 1

2
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+
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Example  
 
The exact method and the other numerical integration methods stated will be employed as an illustration to 
estimate the integral below; 
 

 

3
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0.05 xe dx∫
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Solution 
 
Method 1: Exact (Numerical Integration) 
 

3
2 2 3

00 0

0.05 0.05
!

n
x

n

x
e dx dx

n

∞

=

= ∑∫ ∫  

2 3

0 0

0.05
!

n

n

x
dx

n

∞

=

=∑ ∫
 

3 1

0

2
0.05

(3 1) !

n

n n n

+∞

=

=
+∑

 
4 7 10 372 2 2 2

0.05 2 ... ...
4 7(2!) 10(3!) 37(12!)

 
= + + + + + + 

 
 

= 13.8426444 
 

Now, estimating the integral of the function using several numerical integration methods such as the 

Trapezium rule, Simpson 1
3

 rule, Simpson 3
8

 rule, Boole’s rule and Weddle’s rule, we select n=12 

divisions of the  interval [0,2] . Given
2 0

0.16667
12

b a
h

n

− −= = = , the corresponding ordinates of 

ix a ih= +  are 
3

0.05 ( 0,1,2,...,12)ix
if e i= =  as displayed in Table 1 in the appendix section. 

 

Method 2: Trapezium rule 
 

The estimate of the integral by the trapezium rule is given by 
 

[ ]0.16667
1 2(0.0502 0.0519 ... 5.1238 23.7197) 149.0479

2
= + + + + + +  

[ ]1
0.05 2(63.07114) 149.0479

12
= + +  

212.169
17.68075

12
= =   

Method 3: Simpson’s 13  rule 

 

Using Simpson’s 13  rule, the estimate of the integral is given by  

[0.16667
0.05 4(0.0502 0.0567 0.0892 0.2447 1.4612 23.7197)

3
= + + + + + + +   

]2(0.0519 0.0672 0.1359 0.5351 5.1238) 149.0479+ + + + +   

[ ]1
1 4(25.6217) 2(5.9139) 149.0479

18
= + + +   

263.4123
14.63402

18
= =    
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Method 4: Simpson’s 38   rule 

 

By the Simpson’s 38 rule, the estimate of the integral is  

 

[3(0.16667)
0.05 3(0.0502 0.0519 0.0672 0.0892 0.2447 0.5351

8
= + + + + + + +    

]5.1238 23.7197) 2(0.0567 0.1359 1.4612) 149.0479+ + + + +   

[ ]1
1 3(29.8818) 2(1.6538) 149.0479

16
= + + +   

121.0254
15.1282

16
= = . 

 
Method 5: Boole’s rule 
 
Using Boole’s rule, the estimate is 
 

[2(0.16667)
7(0.05 149.0479) 32(0.0502 0.0567 ... 1.4612 23.7197)

45
= + + + + + + +  

]12(0.0519 0.1359 5.1238) 14(0.0672 0.5351)+ + + +   

[ ]1
7(149.0979) 32(25.6217) 12(5.3116) 14(0.6023)

135
= + + +   

1935.75
14.33889

135
= =  

 
Method 6: Weddle’s rule 
 
Using Weddle’s rule, the estimate is 
 

[3(0.16667)
0.05 5(0.0502 0.2447) (0.0519 0.5351) 6(0.0567 1.4612)

10
= + + + + + + +   

 ](0.0672 5.1238) 5(0.0892 23.7197) 2(0.1359) 149.0479+ + + + +   

[ ]1
0.05 5(24.1038) 6(1.5179) 2(2.7183) 5.7780 149.0479

20
= + + + + +   

284.7739
14.2387

20
= =    

 
Method 7: Proposed Numerical Integration Method  
 

Using the proposed numerical integration method, the values of 1

2

andi
i

x x
+

 and their corresponding 

ordinates 
3

0.05 ix
if e=  and 

3
1

2
1

2

0.05
i

x

i
f e

+

+
= are displayed in Table 1 in the appendix. For the proposed 

numerical integration method, the values are based on 2k =  since 1k =  is the same as the Trapezium rule. 

An estimate of the integral using the proposed method when 2k = is given as follows 
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[ ](0.1667)
0.05 2(0.0500 0.0502 0.0508 ... 57.1315) 149.0479

4
= + + + + + +  

[ ]1
0.05 2(103.7333) 149.0479

24
= + +   

356.5644
14.8569

24
= =   

 

Generally, when 8,9,..., 20,k =  the values for the Proposed Integration method using interpolation for 

evaluating 
32

0
0.05 xe dx∫     taking 12 divisions are given in Table 1. 

 

Table 1. Estimates of the area using both classical and proposed numerical integration method with 12 
divisions 

 

Integration method Area Absolute  
error 

Relative   
error (%) 

M 

Exact (Numerical integration) 13.84264 -   
Trapezium rule 17.68075 3.83811 27.72672 1 
Simpson’s 1/3 14.63402 0.79138 5.716973 2 
Simpson 3/8 15.12818 1.28554 9.286812 1 
Boole’s rule 14.33889 0.49625 3.584938 2 
Weddle’s rule 
Proposed Method when k=8 
Proposed Method when k=9 
Proposed Method when k=10 
Proposed Method when k=11 
Proposed Method when k=12 
Proposed Method when k=13 
Proposed Method when k=14 
Proposed Method when k=15 
Proposed Method when k=16 
Proposed Method when k=17 
Proposed Method when k=18 
Proposed Method when k=19 
Proposed Method when k=20 

14.23869 
13.90725 
13.89371 
13.88401 
13.87684 
13.87138 
13.86713 
13.86376 
13.86104 
13.85881 
13.85697 
13.85542 
13.85411 
13.85299 

0.39605 
0.06461 
0.05107 
0.04137 
0.03420 
0.02874 
0.02449 
0.02112 
0.01840 
0.01617 
0.01433 
0.01278 
0.01147 
0.01035 

2.861087 
0.466746 
0.368933 
0.298859 
0.247063 
0.207619 
0.176917 
0.152572 
0.132923 
0.116813 
0.103521 
0.092323 
0.082860 
0.074769 

2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 

*m = the number of significant digits at least correct 
Source: Author’s research 

 

3 Results and Discussion 
 
From Table 1, the Proposed Numerical Integration method using interpolation is compared to the various 
numerical integration formulas using the relative errors. When 1k = , the area under the curve is 17.68075 

which gives the same result as the area under the curve using the Trapezium rule. Also when 2k =  and 
above, the estimates of the area under the curve are better than the Trapezium rule. Furthermore, when k = 3 
and above, the estimates of the area under the curve are better than the Simpson 1

3
 and 3

8
  rule. When 

8k =   and above, the estimates of the area under the curve are better than Boole and Weddle’s rule. The 
proposed method using interpolation with smaller divisions of the interval gives a better estimate with lesser 

errors as compared to the Trapezium rule, Simpson 1
3

  and 38   rule, Boole’s and Weddle’s rule. 

 

4 Conclusion 
 
This study proposes a numerical integration method using polynomial interpolations. The proposed 
numerical integration method using polynomial interpolation was used to estimate the area under a curve and 
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has proven to be better than the classical methods of numerical integration such as Trapezium rule, Simpson 
1/3 and 3/8 rules, Boole rule and Weddle rule.  
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