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Abstract

The tidal disruption of stars by supermassive black holes (SMBHs) can be used to probe the SMBH mass function,
the properties of individual stars, and stellar dynamics in galactic nuclei. Upcoming missions will detect thousands
of tidal disruption events (TDEs), and accurate theoretical modeling is required to interpret the data with precision.
Here we analyze the influence of more realistic stellar structure on the outcome of TDEs; in particular, we compare
the fallback rates—being the rate at which tidally disrupted debris returns to the black hole—from progenitors
generated with the stellar evolution code MESA to g 4 3 and γ=5/3 polytropes. We find that MESA-generated
density profiles yield qualitatively different fallback rates as compared to polytropic approximations, and that only
the fallback curves from low-mass (1Me or less), zero-age main-sequence stars are well fit by either a g 4 3 or
5/3 polytrope. Stellar age has a strong affect on the shape of the fallback curve, and can produce characteristic
timescales (e.g., the time to the peak of the fallback rate) that greatly differ from the polytropic values. We use
these differences to assess the degree to which the inferred black hole mass from the observed light curve can
deviate from the true value, and find that the discrepancy can be at the order of magnitude level. Accurate stellar
structure also leads to a substantial variation in the critical impact parameter at which the star is fully disrupted, and
can increase the susceptibility of the debris stream to fragmentation under its own self-gravity. These results
suggest that detailed modeling is required to accurately interpret observed light curves of TDEs.

Unified Astronomy Thesaurus concepts: Tidal disruption (1696); Hydrodynamics (1963); Galaxy nuclei (609)

1. Introduction

The tidal destruction of a star by a supermassive black
hole (SMBH) generates a stream of stellar debris that, over
timescales of months to years, feeds the SMBH and generates a
luminous, observable signature (Hills 1975; Lacy et al. 1982;
Rees 1988). These tidal disruption events (TDEs) therefore
offer one of the few means to directly probe the inner regions
of otherwise-quiescent galaxies, and dozens have now been
observed (e.g., Gezari et al. 2012; Arcavi et al. 2014; Chornock
et al. 2014; Blagorodnova et al. 2017; Hung et al. 2017; van
Velzen et al. 2019; see Komossa 2015 for a review). However,
our ability to confidently use the observed flares from TDEs to
study, for example, black hole (BH) demographics depends
critically on our physical understanding of the disruption
process, and in particular the way in which the properties of
the progenitor star translate to a corresponding feeding rate of
the SMBH.

Along these lines, Lodato et al. (2009) simulated the full
disruption of polytropes, which offer simple, yet physical
descriptions of the density profiles of stellar interiors (e.g.,
Hansen et al. 2004), and also provided a nearly analytical
means of calculating the fallback rate from a star with a given
density profile (using the impulse, or “frozen-in,” approx-
imation; see also Stone et al. 2013 and Section 3 below). They
found that, while the fallback rate always approached the
expected, t−5/3 scaling at late times, the peak value of the
fallback and the time to peak depended on the stellar structure.
Guillochon & Ramirez-Ruiz (2013) expanded this work by also
studying the effect of varying the point of closest approach of
the stellar center of mass to the BH, and found that denser stars
more frequently leave bound “cores” that either resist the tidal

shear altogether throughout pericenter passage, or reform following
the full disruption of the star. The existence of these cores then
modifies not only the early-time fallback, but also causes the late-
time fallback to deviate from t−5/3, and these features are a direct
result of the stellar structure (in combination with the variation in
the stellar pericenter).
Since then, a number of other authors have analyzed the tidal

disruption of polytropes, with the aim of assessing one or
another aspect of the tidal disruption process (e.g. Hayasaki et al.
2013, 2016; Coughlin & Nixon 2015; Shiokawa et al. 2015;
Bonnerot et al. 2016; Coughlin et al. 2016, 2017; Bonnerot et al.
2017; Guillochon & McCourt 2017; Mainetti et al. 2017; Wu
et al. 2018; Golightly et al. 2019). However, only relatively few
authors have analyzed the disruption of a star with a density
profile other than a polytrope. We are aware of the following
studies: MacLeod et al. (2012), who investigated the disruption
of giant stars by particularly massive SMBHs; Law-Smith et al.
(2017), who simulated the disruption of white dwarfs with
extended, hydrogen envelopes; Gallegos-Garcia et al. (2018),
who analytically calculated the fallback of metal-rich material
from the cores of evolved stars; and Goicovic et al. (2019), who
analyzed the extent to which a more realistic stellar structure
affects the stellar “disruptability.”
Among the questions that remain concerning stellar structure

is the degree to which more realistic stellar density profiles (i.e.,
those calculated with a stellar evolution code that accounts for
more realistic opacities, metallicity gradients, and energy
transport) affects the fallback rate compared to polytropes.
More realistic stellar profiles could impose additional varia-
bility on the fallback rate, or conceivably alter characteristic
timescales associated with the fallback (e.g., the time to the
peak of the fallback curve). Such timescales are used to place
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constraints on BH properties (e.g., Guillochon & Ramirez-
Ruiz 2013; Mockler et al. 2019), and hence it is necessary to
understand the effects that stellar structure can have in
modifying them.

In this Letter we analyze the disruption of stars with stellar
structure computed with the code MESA (Paxton et al. 2011, 2013,
2015, 2018), primarily to understand the influence that such
structure can have on the fallback of debris to the SMBH. In
Section 2, we first describe and present the stellar profiles
calculated with MESA, and in Section 3 we use the impulse
approximation—as described in Lodato et al. (2009)—to calculate
the fallback rate onto the BH from those stars; we show that,
compared to polytropes that are matched to the same stellar mass
and radius of a given MESA model, there are certain combinations
of initial stellar mass and age that yield notably different fallback
curves. In Section 4 we present the results of numerical
simulations of disruptions of the MESA models, and compare
those results to disruptions of polytropes (again, matched to the
same stellar mass and radius). We discuss the implications of our
simulations for estimating the BH mass from observed light
curves in Section 5, and show that polytropic approximations can
lead to mass-estimate discrepancies at the order of magnitude
level. We summarize and conclude in Section 6.

2. Stellar Profiles

Using the stellar evolution code MESA (Paxton et al.
2011, 2013, 2015, 2018), we evolved a 0.3Me, 1Me, and
3Me zero-age main-sequence (ZAMS) star to the end of the
main sequence (MS), being the time at which the hydrogen
mass fraction in the core dropped below 0.1%. For each star,
we used all of the default values for the standard inputs (e.g.,
each pre-MS model adopted Solar metallicity, the stars were all
non-rotating, there was no mass loss in the form of winds)
within MESA, version 10398.

We took snapshots of the density of each star at the ZAMS,
the terminal-age main sequence (TAMS), and at one time in
between ZAMS and TAMS when the hydrogen mass fraction in
the core just fell below 0.2; we denote the latter by a “middle-age
main sequence” star (MAMS).4 Figure 1 shows the density
profile of each of these stars, and demonstrates, perhaps not
surprisingly, that stellar evolution produces vastly different
density structures over the lifetime of a given star.

In the following two sections, we describe two different
approaches to modeling the tidal disruption of these stars by
an SMBH.

3. The Impulse Approximation

A useful methodology for analyzing the fallback of debris
from a tidal disruption event is the impulse approximation,
which posits that the tidal field of the BH acts impulsively as the
center of mass of the star reaches the tidal radius. Therefore,
prior to reaching the tidal radius the star retains perfect
hydrostatic balance, and thereafter the star is “destroyed,”
meaning that each gas parcel follows its own ballistic orbit in the
gravitational field of the BH. Within this approximation and to
lowest order in the tidal potential, the binding energy of a given
fluid parcel is only a function of the projected distance of that
fluid parcel from the BH onto the line connecting the stellar
center of mass and the BH. This energy dependence implies that
perpendicular “slices” of the star return simultaneously to the
BH, which allows one to construct a fallback rate Ṁ—being the
rate at which bound material returns to the BH—that accounts
for the stellar density profile ρ; the result is (Lodato et al. 2009;
Gallegos-Garcia et al. 2018; Golightly et al. 2019)
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the return time of the most bound debris, M the BH mass and
Rå the stellar radius, η=R/Rå with R the spherical distance
from the center of the star, and r p=  M R3 4 3( ) is the
average stellar density. Note that the integral in Equation (1) is
negative for all times t<Tmb, and hence the physical fallback
rate is zero until the most bound debris element returns to
the BH.
From Equation (1), within the impulse approximation the

only timescale relevant to the problem is the return time of the
most bound debris; hence the time at which the fallback reaches
any characteristic value (e.g., the time to peak, the time
between half-peaks, the time to reach µ a- +M t 5 3˙ with
α>0) is also a constant multiple—which depends on the
stellar structure—of this timescale. If we denote the dimension-
less time to any characteristic fallback value by τc, then by
definition the corresponding physical time tc is
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This simple expression demonstrates the relative importance
that stellar structure can have when inferring BH properties

Figure 1. Stellar density profiles computed with MESA in g cm−3 as a function of radius in Solar radii. The left panel shows the 0.3 Me star, the middle the 1 Me star,
and the right the 3 Me star, with the different ages shown by the different lines as indicated in the legends.

4 We are aware that 0.3 Me stars have not reached TAMS within a Hubble
time. Nonetheless, the density profile of such a star could be achieved at an
earlier epoch by a more massive progenitor with, e.g., vigorous mass loss in the
form of winds or a more metal-rich environment.
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from observations5: assume that for a given tidal disruption
event with known tc, we know the mass and radius of the
disrupted star. Then, for the same event if we ascribe to the
disrupted star two different density profiles, ρ1 and ρ2, we will
infer two different BH masses for the same event, M1 and M2,
their ratio being

t r
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Thus, relatively small differences in the stellar structure are
capable of producing more discrepant BH masses owing to the
squared dependence in this expression.

Figure 2 illustrates the fallback rate onto the BH (in units of
Solar masses per year as a function of time in years) from the
frozen-in approximation, where the disrupted star has a mass and
radius equal to those of the 1Me, TAMS star (see Table 1) and
the BH has a mass of 106Me. Each curve adopts a different
stellar density profile, being a γ=5/3 polytrope (blue, dotted–
dashed), a γ=1.35 polytrope (green, dashed), and the profile
resulting from MESA (red, solid). It is clear from this figure that,
despite the fact that the bulk stellar properties are the same, the
density profile has a marked effect on the shape of the curve. To
highlight the differences induced by stellar structure, the points
on each curve give the time to different, characteristic values of
the fallback curve, being the time to peak (tmax), the time to
reach half the peak (which occurs on the rise and the decay of
the curve, denoted, respectively, by thalf,1 and thalf,2), and the time
to reach µ -M t 4 3˙ , t4/3. While certain characteristic times are
visibly comparable for each model (e.g., tmax), other timescales
are more noticeably discrepant (e.g., t4/3).

Because of these discrepancies, for a TDE with a given
physical timescale, the BH mass required to yield a fallback
curve with that timescale will differ according to the stellar
structure model that one employs, and the magnitude of the
difference in mass will be larger or smaller depending on the
characteristic timescale itself. For example, using Equation (4)
and letting ρ1 describe the density profile of the 1Me, TAMS
MESA progenitor, we find M M 2.32 1  if one models the
density profile by a γ=1.35 polytrope and uses the difference
between the time to peak and the first time to half peak (i.e., the
timescale tc=tmax–thalf,1

6); physically, one can interpret this
result by saying that a γ=1.35 polytrope requires a BH mass
∼2.3 times larger to reproduce the time to peak from the 1Me,
TAMS MESA progenitor. On the other hand, if we use the same
timescale but model the star as a γ=5/3 polytrope, then we
find M M 142 1  —because a γ=5/3 polytrope peaks
considerably earlier than the real star, a much larger BH mass
is required in order to extend the time to maximum fallback.
Figure 3 directly demonstrates how changing the mass of the

BH yields commensurate characteristic timescales: the solid red
curve shows the same fallback rate as in Figure 2 for the 1Me,
TAMS stellar profile computed with MESA and a 106Me SMBH
(note that this figure is on a linear–linear scale). The dashed, green
line, and the dotted–dashed blue line show the fallback rates for a
γ=1.35 and γ=5/3 polytrope, respectively, again with the
same stellar properties as those of the MESA progenitor. However,
here we varied the mass of the BH according to the value required
to yield the same time to peak, being M=2.3×106 for the
γ=1.35 polytrope and = ´M M1.4 107

 for the γ=5/3
polytrope. The time between the first half-peak (marked with a †)
and the peak fallback rate (marked with a å) is the same in each
case. This shows that, by varying the BH mass appropriately, one
can reconstruct the same physical timescale for different stellar
properties.
One can repeat this procedure for the nine different models

presented in Table 1 and thereby assess the degree to which a
polytropic density profile reproduces the fallback curve—and
correspondingly the inferred BH mass—of the one obtained
with the MESA model. However, the impulse approximation
ignores crucial physics of the disruption process that also alter

Figure 2. Fallback rate calculated using the frozen-in approximation, in Solar
masses per year as a function of time in years, for the 1 Me, TAMS star, when
the density profile is modeled as a γ=5/3 polytrope (blue, dotted–dashed)
and a γ=1.35 polytrope (green, dashed); the solid red curve shows the
fallback rate calculated from the MESA progenitor. Here the BH mass was set to
106 Me. The different points show characteristic times in the fallback rate,
including the time taken to reach the peak (tmax, asterisks), to reach µ -M t 4 3˙
(t4/3, bullets), and the time taken to reach half the peak fallback rate (which
occurs on both the rise and the decay of the curve; respectively thalf,1 and thalf,2,
crosses). It is apparent that, while each one of these stars possesses the same
mass and radius, the density profile also plays a large role in generating
differences between these characteristic timescales.

Table 1
The Properties of Each Star Evolved in MESA

Star Mass (Me) Radius (Re) rt (Rg)

0.3Me ZAMS 0.3 0.28 20
0.3Me MAMS 0.3 0.33 24
0.3Me TAMS 0.3 0.49 34
1 Me ZAMS 1.0 0.89 42
1 Me MAMS 1.0 1.1 50
1 Me TAMS 1.0 1.2 57
3 Me ZAMS 3.0 2.0 67
3 Me MAMS 3.0 3.4 112
3 Me TAMS 3.0 3.5 115

Note.Each disruption has β=3, and hence the pericenter distance of each star
to the SMBH is obtained by dividing the tidal radius (fourth column) by 3.
From left to right, the star name, stellar mass Må in solar masses, stellar radius
Rå in solar radii, and tidal radius ( º  r R M Mt

1 3( ) ), where M=106 Me, in
units of gravitational radii of a 106 Me SMBH.

5 We assume for simplicity that the observed accretion luminosity scales with
the fallback rate; one can permit further flexibility in this regard, but only at the
expense of introducing additional uncertainties.

6 For an observed TDE, one does not know the time at which the star was
disrupted, and hence the reference time should also be set to some physical
timescale associated with the fallback.
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the fallback rate (Guillochon & Ramirez-Ruiz 2013; Coughlin
& Nixon 2015; Steinberg et al. 2019). In the next section, we
employ hydrodynamical simulations to obtain more realistic
fallback rates.

4. Hydrodynamic Simulations

4.1. Setup

We use the smoothed particle hydrodynamics (SPH) code
PHANTOM (Price et al. 2018) to model the hydrodynamics
of the disruption process. Following previous work (e.g.,
Coughlin & Nixon 2015; Coughlin et al. 2016; Wu et al. 2018;
Golightly et al. 2019) we model the central SMBH as a
Newtonian point mass at the origin with an accretion radius,
inside which particles are removed from the simulation. We
include the self-gravity of the star, and we model the stellar
pressure using an adiabatic equation of state P=Kργ, where K
is a conserved quantity for each fluid element but can be
spatially dependent within the original star. K is chosen such
that the fluid pressure is the total pressure in the MESA
calculation, and thus the SPH star has an equilibrium density
structure that matches the stellar density structure calculated by
MESA. The properties of each star are given in Table 1.

We construct the star with particles placed on a close-packed
sphere that is stretched to achieve the desired density
distribution. We then relax the particle distribution in isolation
with a velocity damping force until the star settles into a
numerically relaxed configuration. We plot the density
structure at this point against the solutions from MESA in the
Appendix (Figure 9). We further checked that these solutions
are numerically relaxed by evolving them in isolation for the
time taken for the star to reach pericenter in each case, and we
found no subsequent evolution of the density profile.

We then placed the relaxed stars on parabolic orbits around a
central SMBH, with the initial location at five tidal radii. To
ensure full disruption of at least some of the stars we chose an
impact parameter of b º =r r 3t p , where =  r R M Mt

1 3( ) is

calculated from the mass and radius of each star (see Table 1)
and rp is the pericenter distance of the stellar center of mass.
Thus, while the β is the same for each simulation (and therefore
the average strength of the tidal field at pericenter is the same),
the physical pericenter is different from simulation to
simulation. As we shall see below, β=3 is still not large
enough to completely disrupt all of the MESA-generated stars,
but we neglected to go to higher β because of the prohibitively
large particle number required to achieve converged results.
For each simulation we employed 106 particles, though we also
ran tests with 105 particles and found only small differences (at
the noise level) in the fallback.
To understand the impact of stellar structure, additional

simulations were also performed with a γ=1.35 polytrope and
a γ=5/3 polytrope, with the mass and radius of each
polytrope matched to those of the MESA progenitor and the
same orbital properties (i.e., the same β). For the polytrope
disruptions, we set the adiabatic index equal to Γ=5/3, such
that the microphysics and the stiffness of the equation of state is
identical to that employed in the MESA calculations. In this
way, the only difference between the polytrope disruptions and
the MESA star disruptions is the density profile—the stellar
mass, radius, and microphysics are identical—and these
simulations therefore isolate the imprint that the density profile
has on the fallback rate.
In this Letter we are interested in the fallback rate, defined as

the rate at which disrupted material returns to pericenter, and
we therefore increase the accretion radius to 3 rt once the star
has passed through pericenter. The fallback rate of material
through this radius will, in general, differ from the true
accretion rate, which is the rate at which material passes
through the horizon of the BH. In general, the latter requires
detailed, high-resolution simulations that accurately model the
formation of the accretion flow around the BH. This is not
currently computationally feasible for standard TDE para-
meters, but has been attempted by various authors in restricted
cases (see, e.g., Hayasaki et al. 2013, 2016; Shiokawa et al.
2015; Bonnerot et al. 2016; Saḑowski et al. 2016). For the
relatively high-β simulations considered here, the general
relativistic advance of periapsis will be large, which should
enhance energy dissipation and the formation of an accretion
disk. We therefore expect the fallback rates we find to closely
track the true accretion rate onto the BH, but we leave a
detailed study of this process to a future investigation (for
which our fallback rates could be used as inputs).
Finally, as we noted above, the more highly evolved MESA

stars have extremely dense cores, and—even for a β of 3
encounter—those cores survive the tidal interaction with the
BH. In these instances, the time step is extremely limited
because of the high density and sound speed at the center of the
stellar remnant, which makes these simulations prohibitively
expensive to run for the duration over which the fallback
occurs. Therefore, once the surviving core recedes to a
significant distance from the SMBH, we replace all of the
particles in the bound core that have a density above the
maximum (non-core) stream density by a single sink particle.
The position and velocity of the sink is set equal to the center of
mass position and velocity of all the particles used to create the
sink, and the accretion radius of the sink particle is equal to the
maximum distance of these particles from their center of mass
(the sink position). For the simulation with the densest core
(0.3Me, TAMS) we inserted the sink at a time of 3.5 days post

Figure 3. Fallback rate in Solar masses per year, as a function of time in years
on a linear–linear scale, for the 1 Me, TAMS MESA progenitor, shown by the
solid red curve, when the star is disrupted by a SMBH with mass =M M106


(and is therefore the same as the solid red curve in Figure 2). The dashed green
curve and the dotted–dashed blue curve show the fallback rates for a γ=1.35
and γ=5/3 polytrope, respectively, when the stellar properties (mass and
radius) are matched to those of the MESA progenitor. By changing the BH mass
to the value shown in the legend, we are able to reproduce the time taken to go
from half peak to peak, being tc=0.63 yr. For each curve, this timescale is the
time taken to go from the † to the å.
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pericenter. The other simulations with bound cores were less
computationally expensive and ran to later times. As such we
inserted the sink at times (post pericenter) of 15 days (1.0Me,
TAMS), 11 days (3.0Me, TAMS), 173 days (1.0Me, MAMS),
and 27 days (3.0Me, MAMS). We tested the robustness of this
approach by changing the time at which we replaced the
resolved core with the sink, and found negligible changes in the
subsequent fallback rate.

One way in which this approximation could adversely affect
the fallback rate is if we erroneously included the marginally
bound (to the core) radius within the particles that constitute
the core. If we were to make this error, the fallback rate onto
the BH would abruptly terminate at a late, but ultimately
finite time. We have checked that the mass of the sink particle
increases very slightly after its formation, indicating that
the marginally bound radius is indeed outside of the radius of
the sink particle.

4.2. Results

Figure 4 illustrates the fallback rate onto the BH in Solar
masses per year as a function of time in years from six different
stellar models, with the specific stellar model shown in the
legend. In each panel the solid curve shows the fallback from
the star with the MESA density profile, the dashed curve is the
γ=5/3 model matched to the MESA stellar mass and radius,
and the dotted–dashed curve is the γ=1.35 polytropic model
(again, with the same mass and radius as the MESA star). It is
evident from the top-left panel and the middle-left panel that
the 0.3Me, ZAMS and the 1.0 Me, ZAMS MESA fallback
curves are extremely well-reproduced by γ=5/3 and
γ=1.35 polytropes, respectively. This finding indicates,
correspondingly, that such stars can be very well-modeled by
single polytropes that are gas-pressure and (nearly) radiation-
pressure dominated (see Figure 5). This result for the 1Me,
ZAMS star was also recovered by Goicovic et al. (2019), who
found that their fallback rates (from a 1Me, ZAMS star
generated with MESA) were very similar to those of Guillochon
& Ramirez-Ruiz (2013), who used a polytropic approximation.

For every other stellar model, however, there are notable
differences between the fallback curves from the MESA and the
polytropic models. Specifically, we see that employing the
MESA density profile over either polytropic model system-
atically shifts the return time of the most bound debris to earlier
times, the time to peak to earlier times, and the magnitude of
the peak rate itself is also increased. Furthermore, because the
total mass is the same, the larger peak in the accretion rate and
the earlier time-to-peak imply that the MESA curves must fall
below the polytropic ones at some point, and this is indeed
recovered in each case. It is also apparent that the MESA models
conform to a power-law decline at an earlier time than do the
polytropic models.

Every polytropic star is completely disrupted by the SMBH
for these β=3 encounters, which agrees with the results of
Guillochon & Ramirez-Ruiz (2013) and Mainetti et al. (2017),
who demonstrated that the critical β for the full disruption of a
γ=5/3 polytrope is b 0.9 , while that for a γ=4/3
polytrope is b 2 . Each ZAMS MESA progenitor is also fully
disrupted. However, more highly evolved stars start to yield
partial TDEs, and the MESA 1Me MAMS and 3.0Me MAMS
leave stellar cores at the location of the marginally bound orbit.
We see that, for the case of the 3.0Me, MAMS progenitor, the
presence of the core has the affect of modifying the late-time

fallback rate, which declines approximately as ∝ t−9/4 instead
of t− 5/3. This result is in agreement with the analytic
predictions of Coughlin & Nixon (2019).
The TAMS MESA progenitors all possess extremely dense

cores that survive the tidal encounter, each of which modifies
the late-time fallback rate onto the BH, as shown in Figure 6
(the time taken for the 3.0Me progenitor to go from MAMS to
TAMS is very short, and hence the TAMS fallback curve
appears nearly identical to the bottom-right panel of Figure 4;
we therefore opted not to show this fallback rate). We also
emphasize that the lifetime of the 0.3Me star is well in excess
of the age of the universe, and hence this star cannot be
disrupted by an SMBH (at least not any time soon). However,
the density profile of this star could conceivably be achieved by
a more massive progenitor, which would evolve to the TAMS
within the age of the universe, with different initial properties
(e.g., metallicity, rotation).
As we noted above, the 1Me MAMS MESA progenitor also

possesses a bound stellar core at the center of mass of the
tidally disrupted debris stream. In this case, however, the star is
initially completely disrupted, and the core recollapses out of
the stream at a time significantly after the stellar center of mass
passes through pericenter. For this reason, the mass of the
surviving core is only a small fraction of the initial progenitor
( 15% ), and consequently the fallback curve shows little
evidence of the gravitational influence of the core over ∼1 yr
and appears to approach a decline ∝ t−5/3.
Figure 7 shows the fallback from the 1Me MAMS MESA

progenitor out to 10 yr post-disruption and demonstrates,
however, that the presence of the core does start to affect the
fallback at later times. In particular, we see that while the first
year shows little evidence of the existence of a bound core,
there is a clear break in the fallback curve at a time of 1–2 yr
where the power law of the fallback rate transitions from ∝
t−5/3 to one that is better matched by ∝ t−9/4. Interestingly, this
time at which a break in the power law is exhibited is very
close to the time predicted by the analytical model in Coughlin
& Nixon (2019; see their Figure 2), and coincidentally also
occurs around the same time at which the fallback rate drops
below the Eddington limit of the SMBH (dashed black line,
assuming a radiative efficiency of 10% and an electron-
scattering opacity of 0.34 cm2 g−1).

5. Implications for BH Mass Estimates

It is apparent from Figures 4 and 6 that, for the majority of
progenitors, non-polytropic stellar structure generates substan-
tial differences in the fallback rate onto the BH. Notably, the
MESA profiles yield earlier times to peak and larger peak
fallback rates, and they more rapidly approach a power-law
falloff as compared to the polytropes. To use these differences
to estimate the corresponding differences in the inferred BH
mass that would arise by assuming a given density profile, we
must have a mapping between a characteristic timescale (e.g.,
the time to peak), the BH mass, and the properties of the star.
As shown in Section 3, when the fallback rate is computed with
the impulse approximation, this mapping arises through the
timescale

p
µ


T

R M

M GM
M

2
, 5mb

3 2
1 2 ( )

which is the return time of the most bound debris. Additional
dependence on the stellar structure modifies the fallback rate
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through a dimensionless function of time normalized by Tmb,
and that dimensionless function can be calculated from the
(assumed-unaltered) density profile when the star is at the tidal
radius. Thus, the dependence on the BH mass arises only as ∝
M1/2, and in this approximation, fallback curves are simply
scaled in time and magnitude by M .

By comparing Figure 2 to Figures 4 and 6, wee see that the
frozen-in approximation does not accurately reproduce many of
the features of the numerically obtained fallback rates. In
addition to the fact that the time to peak is shorter and the peak
itself is higher in the numerical simulations (by a factor 10),
the ordering of the curves is actually inverted between the two

Figure 4. Fallback rate onto the 106Me SMBH in units of Solar masses per year as a function of time in years. Here solid curves correspond to the density profiles
generated from MESA, dashed curves are γ=5/3 polytropes matched to the stellar mass and radius of the MESA star, and dotted–dashed curves are γ=1.35
polytropes matched to the MESA star mass and radius; dotted black lines show the power-law ∝ t−5/3, while the dotted–dotted–dashed line in the bottom-right panel
shows the scaling ∝ t−9/4. The long-dashed black line gives the Eddington luminosity of the BH, assuming a radiative efficiency of 10% and an electron-scattering
opacity of 0.34 cm2 g−1. The specific star is shown by the name in the legend, and panels on the left side show the fallback from stars at ZAMS, while those on the
right are more highly evolved. It is apparent from the top-left and middle-left panels that the fallback curves from the 0.3 Me, ZAMS and the 1 Me, ZAMS progenitors
are very well-reproduced by γ=5/3 and γ= 1.35 polytropes, respectively. Every other fallback curve from a MESA-generated density profile, however, shows
significant deviations from the polytropic approximations. We also see that the 3.0 Me, MAMS follows ∝ t−9/4 at late times, which results from the presence of a
bound core that survives the encounter (Coughlin & Nixon 2019; no bound core is left when the star is modeled as a polytrope). The 0.3 Me, MAMS MESA star also
shows enhanced variability in the fallback rate, which arises from the fact that the stream—unlike the polytropic models for the same MESA star mass and radius—has
fragmented vigorously into small-scale clumps.
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approaches: while Figure 2 shows that the γ=5/3 polytrope
peaks earlier than γ=1.35 polytrope, which itself peaks
earlier than the MESA model, Figures 4 and 6 demonstrate that
the γ=5/3 polytrope always reaches a peak after the
γ=1.35 polytrope.7 Moreover, for every case except the
0.3Me ZAMS and 0.3Me MAMS progenitors, the MESA
model peaks earlier than the γ=1.35 polytrope. The
numerically obtained return time of the most bound debris
also differs for each density profile, whereas, under the frozen-
in approximation, this timescale—for the same BH mass—is
only affected by the stellar mass and radius (which, for a given
star, are identical by construction).

These discrepancies indicate that the impulse approximation
does not include enough physics to accurately capture the bulk
features of the fallback rate. As discussed at length in Coughlin
et al. (2016), it is likely that the most crucial physical ingredient
lacking from the impulse approximation is the self-gravity of the
debris stream, as the stellar center of mass rapidly recedes outside
of the tidal sphere of the BH. At this point, the stellar density is
comparable to the “BH density,” being r ~ M r• t

3, and the self-
gravity of the stream is capable of competing against the shear of
the BH. The self-gravity of the stream induces density waves that
traverse the stream radially, and these waves serve to generate
more pronounced “shoulders” near the extremities of the stream

and flatten the dm/dr∝ρ curve from the polytropic one that
follows from the frozen-in approximation. It is, in fact, because of
this nearly flat dm/dr generated by self-gravity that the fallback
curves more rapidly approach the t−5/3 decline (or the t−9/4 decline
for the partial TDEs). The higher central density of the γ=1.35
polytrope also generates more vigorous density waves, which
correspondingly produce a flatter density distribution and give rise
to an earlier time-to-peak as compared to a γ=5/3 polytrope.
Nonetheless, it is likely that after some amount of time

following the disruption, the mass distribution is approximately
frozen-in, meaning that self-gravity has smoothed out any
density perturbations and the stream is long enough that the
time-dependent potential due to self-gravity is small.8 In this
case, the energies of gas parcels comprising the stream are still
Keplerian in the potential of the BH, and the energies
themselves are simply established at some later time; indeed,
these arguments were used and verified by a direct evaluation
of the energy distribution at different times by Lodato et al.
(2009) and Guillochon & Ramirez-Ruiz (2013) to calculate
fallback rates to the BH after only a small fraction of the return
time of the most bound debris had been directly simulated.9

Moreover, if for a given β and stellar progenitor the density
profile at the time the energy is frozen-in is independent of the
BH mass, which the simulations of Wu et al. (2018) verify10

(see their Figure 1), then it follows that any physical timescale
in a TDE can be written

= bt M f , 6c , ( )

where få,β is a function that depends only on the stellar
properties and β. We therefore see that, for the same star and
the same orbital parameters, we recover the same result as we
did in Section 3: for two TDEs with identical orbital and stellar
properties and physical timescales t1 and t2, we can satisfy
t1=t2 by changing the BH mass M1 to M2, with M2 given by

=M M
t

t
. 72 1

2

1

2

( )
⎛
⎝⎜

⎞
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As an example, the 3Me, MAMS progenitor (bottom-right
panel of Figure 4) modeled as a γ=1.35 polytrope has a time
to go from the first-half-max, thalf,1, to max, tmax, of =t1
t t 0.085 yrmax half,1–  . On the other hand, the MESA model
of the same star has = =t t t 0.0275 yr2 max half,1– . Thus, if we
modeled the disruption of the MESA star as a polytrope, then

Figure 5. Density profiles of the 0.3 Me ZAMS (top panel) and 1.0 Me ZAMS
(bottom panel) compared with the density profiles of γ=1.35 (dotted–dashed)
and γ=5/3 (dashed) polytropes with the same mass and radius. For the
0.3 Me ZAMS star, the γ=5/3 polytrope provides an excellent fit, while for
the 1.0 Me ZAMS star the γ=1.35 polytrope provides an excellent fit.

7 This effect can also be seen in Figures 2 and 10 of Lodato et al. (2009),
though this inversion was not noted by those authors.

8 However, the arguments of Coughlin et al. (2016) and the simulations of
Coughlin & Nixon (2015) suggest that the stream is weakly gravitationally
unstable, and hence the freezing of the energy distribution is only valid over an
integrated region of the stream that contains many clumps that form out of the
instability.
9 When the tidal encounter leaves a surviving core behind, a Keplerian energy
distribution is no longer upheld; however, as shown by Coughlin & Nixon
(2019), when the self-gravity of the stream itself no longer significantly
modifies the density distribution along the stream, one can make a change of
variables when calculating the fallback rate that shows that Equation (6), and
hence Equation (7), still holds.
10 This is also a reasonable expectation, as β measures the tidal strength of the
BH; thus, for encounters with the same β, it follows that the energy distribution
should be roughly fixed at the same time after self-gravity (which depends only
on the stellar properties) has modified the density distribution, and the absolute
value of the BH mass should not matter. This assumption breaks down,
however, once the orbital timescale becomes shorter than the time over which
self-gravity acts to modify the density distribution, which occurs for very small
BH masses (where even the tidal approximation itself starts to break down).
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we would require a BH mass of =M t t M M0.0972 2 1
2

1 1( )  
M105
 to reproduce the observed timescale.

Table 2 gives the ratio M2/M1 required to shift the timescale
of the polytropic star to the timescale reproduced by the MESA-
star disruption. The timescale itself is shown in the top row of
the table, where tmax–thalf,1 is the time to go from first-half-max
to the peak fallback rate, thalf,2–tmax is the time taken to fall by a
factor of two below the peak fallback rate, and thalf,2–thalf,1 is
the FWHM of the fallback curve. The stellar progenitor is
given in the left-most column of the table, and the value in the
left (right) of each cell is the ratio M2/M1 required to yield the

MESA-generated timescale by modeling the star as a γ=1.35
(γ=5/3) polytrope. For example, if we were to model the
0.3Me star as a γ=1.35 polytrope, then we would require a
BH mass of M2=5×M1 to reproduce the timescale
tmax–thalf,1 found from the disruption of the MESA model, and
the number M2/M1=5 is shown in the top-left cell of the
table.
We see from this table that, for stellar density profiles that

are well-reproduced by polytropes (the 0.3Me ZAMS and the
1Me ZAMS stars, as shown in Figure 5), the mass ratio
required to reproduce the MESA-generated timescale with a
polytropic one is very close to unity. In these instances, the
inferred BH mass estimate is not far off the true, underlying
value. However, for more massive progenitors and more highly
evolved stars, the extremely dense core of the MESA progenitor
shifts each timescale earlier, which consequently requires a
significantly smaller BH mass to yield the same characteristic
timescale with a polytropic model.
As a direct demonstration of this effect, Figure 8 illustrates

the fallback rate from the disruption of the 3Me, ZAMS MESA
model by an SMBH of mass M1=106Me, which is the same
curve shown in the bottom-left panel of Figure 4. The dotted–
dashed curve is the fallback curve from the disruption of a
γ=1.35 polytrope, the stellar mass and radius identical to
those of the MESA star. In this case, however, we set the mass
of the disrupting SMBH to M2=2×105, which is, as seen in
Table 2, the value predicted to equate the time to go from the
first-half-max to the peak between the two models, and we
aligned the first time to half-max of the polytrope fallback
curve to that of the MESA star (i.e., we initially “see” both
disruptions at the same time, that time being the first time to
half-max). We see that this polytropic model provides an
extremely good fit to the “data” obtained from the fallback
curve of the MESA model, but at the expense of incorrectly
inferring the SMBH mass by nearly an order of magnitude.
Of course, our approach here to “modeling” the light curve

of a TDE is overly simplistic, as one does not necessarily have
any prior information about the nature of the progenitor or the
BH, and one must use a combination of timescales to recover
the best-fit model parameters (as is done in, for example,
Guillochon et al. 2018). However, these results do demonstrate

Figure 6. Fallback rate from the 1 Me, TAMS progenitor (left panel) and the 0.3 Me, TAMS progenitor (right panel), where the solid curves are for the MESA-
generated density profile and dashed (dotted–dashed) curves are from γ=5/3 (γ=1.35) polytropes matched to the MESA star mass and radius. In each case the
MESA density profile yields a bound core that survives the encounter, while the polytropes do not; this results in a late-time power-law falloff that declines
approximately as t−9/4 (dotted–dotted–dashed line) and is significantly steeper than t−5/3 (dotted line). The Eddington luminosity of the BH, assuming a radiative
efficiency of 10% and an electron-scattering-dominated opacity of 0.34 cm2 g−1, is shown by the long-dashed black line.

Figure 7. Fallback rate from the 1 Me, MAMS MESA progenitor, in units of
Solar masses per year as a function of time in years, run out to 10 yr post-
disruption. The dotted line shows the scaling ∝ t−5/3 (predicted to be the
asymptotic power law followed by the fallback if there is no surviving core),
the dotted–dotted–dashed line gives the scaling ∝ t−9/4 (predicted by Coughlin
& Nixon 2019 to be the asymptotic power-law decline of the fallback if there is
a surviving core), and the long-dashed line gives the Eddington luminosity of
the hole if the radiative efficiency is 10% and the opacity is set to the electron-
scattering opacity of 0.34 cm2 g−1. Here the stream possesses a gravitationally
bound core (with a mass of ∼15% of the progenitor star) at the location of the
marginally bound radius that reforms out of the stream after the star is initially
completely disrupted. We see that for roughly the first year after the return of
the most bound debris there is little evidence of the existence of the core on the
fallback, and the fallback curve appears to asymptote to a t−5/3 decline.
However, around roughly 1 yr, there is a noticeable break in the falloff, and the
curve steepens to a decline that is well matched by the power law ∝ t−9/4.
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that care needs to be taken to ensure that the template fallback
curves used to interpret observed data sets contain a sufficiently
broad range of stellar density profiles (e.g., accounting for
stellar age, and non-polytropic density profiles) to ensure that
the inferred parameters are accurate and that the error bars that
result from the data fitting are appropriate.

6. Discussions and Conclusions

In this Letter we presented simulations of the tidal disruption
of stars encountering an SMBH. We modeled the tidally
disrupted stars with the same bulk properties (mass and radius)
using three different prescriptions: (1) a γ=5/3, polytropic
density profile, (2) a γ=1.35(≈4/3), polytropic density
profile, and (3) a density profile calculated from the MESA
stellar evolution code. Our simulated disruptions included stars

with masses of 0.3Me, 1.0Me, and 3.0Me, each of which was
evolved to the ZAMS, the TAMS (where the hydrogen mass
fraction in the core fell below 0.1%), and the “middle-age main
sequence,” which we defined to be the time at which the
hydrogen mass fraction in the core fell below 20%. We
therefore simulated a total of 27 disruptions (nine different
stars, each star modeled with a MESA density profile and two
different polytropic profiles).
In each simulation we maintained the same physics: we

employed a polytropic equation of state where the Lagrangian
entropy was fixed and set to ensure the isolated star was in
hydrostatic balance (see Figure 9); we fixed the adiabatic index
in each simulation to 5/3, which ensures that the dynamics of
the stream’s self-gravity (see Coughlin & Nixon 2015) differs
only by the mass-entropy distribution along the stream; and we
fixed the tidal effects from the BH on each star by employing a
b º =r r 3t p for each simulation, where rp (rt) is the
pericenter (tidal) radius of the star (see also Table 1). Our
simulations therefore isolate the impact of the stellar density
profile calculated from MESA when compared to those
calculated by γ=5/3 and γ=1.35 polytropes.
In general we find that there are significant differences in the

simulated fallback rates for stars with different masses and
different ages, and further that in most cases these fallback rates
deviate significantly from predictions made using polytropes.
The exceptions, which come as no surprise as their structures
are accurately modeled by polytropes (see Figure 5), are the
0.3Me ZAMS star—which is well-modeled by a γ=5/3
polytrope—and the 1.0Me ZAMS star—which is well-
modeled by a γ=1.35 polytrope. At both MAMS and TAMS
we find that neither polytrope provides an acceptable descrip-
tion for the fallback curve. Similarly the fallback rates from the
3.0Me stars are all significantly different to the fallback rates
from either polytrope.
There are also differences found in the overall dynamics of

the disruption event. In several cases, most notably for the
0.3Me MAMS star, the debris stream is significantly more
self-gravitating for the MESA star than for the polytropes. This
results in the fallback curve exhibiting more variability on the
power-law decay (see the top-right panel of Figure 4). We also
find that several of the MESA stars are not fully disrupted, even
with an impact parameter of β=3, and this arises from

Table 2
The Ratio M2/M1 that is Required to Produce the Same Physical Timescale if the MESA Fallback Curve is Modeled by a Polytropic One

Timescale t tmax half,1– t thalf,2 max– t thalf,2 half,1–
Star γ=1.35 γ=5/3 γ=1.35 γ=5/3 γ=1.35 γ=5/3

0.3 Me ZAMS M2/M1=5.0 M2/M1=0.81 M2/M1=12 M2/M1=1.19 M2/M1=9.1 M2/M1=1.07
0.3 Me MAMS M2/M1=7.0 M2/M1=1.2 M2/M1=5.3 M2/M1=0.50 M2/M1=5.9 M2/M1=0.67
0.3 Me TAMS M2/M1=0.24 M2/M1=0.061 M2/M1=0.22 M2/M1=0.022 M2/M1=0.23 M2/M1=0.030
1.0 Me ZAMS M2/M1=0.83 M2/M1=0.15 M2/M1=0.92 M2/M1=0.074 M2/M1=0.89 M2/M1=0.093
1.0 Me MAMS M2/M1=0.33 M2/M1=0.042 M2/M1=0.25 M2/M1=0.025 M2/M1=0.27 M2/M1=0.031
1.0 Me TAMS M2/M1=0.14 M2/M1=0.032 M2/M1=0.13 M2/M1=0.010 M2/M1=0.14 M2/M1=0.015
3.0 Me ZAMS M2/M1=0.19 M2/M1=0.033 M2/M1=0.22 M2/M1=0.019 M2/M1=0.21 M2/M1=0.023
3.0 Me MAMS M2/M1=0.097 M2/M1=0.018 M2/M1=0.059 M2/M1=0.0057 M2/M1=0.072 M2/M1=0.0086
3.0 Me TAMS M2/M1=0.067 M2/M1=0.0076 M2/M1=0.045 M2/M1=0.0049 M2/M1=0.053 M2/M1=0.0058

Note.Here the physical timescale used to infer the required mass ratio is given in the top row, with Tmax–thalf,1 the time from the first-half-max to the maximum
fallback rate, thalf,2–tmax the time taken to go from the peak fallback rate to half that value, and thalf,2–Thalf,1 the FWHM; each one of these timescales differs for a given
star, but by scaling the BH mass by the value shown in each cell, they can be brought into agreement with one another. The stellar model is given in the left-most
column, and the ratio M2/M1 obtained by using a γ=1.35 (γ=5/3) is given in the left (right) of each cell.

Figure 8. Fallback curve from the 3 Me, ZAMS MESA progenitor, with a BH
mass of M1=106Me (solid red; this curve is identical to the solid red curve
shown in the bottom-left panel of Figure 4). The dotted–dashed curve shows
the fallback rate from the tidal disruption of a γ=1.35 polytrope, with its mass
and radius matched to those of the MESA star. Here, however, we reduced the
mass of the SMBH by the factor shown in Table 2, corresponding to a BH mass
of M2=2×105 Me, and we aligned the first time to half-max to that of the
MESA fallback curve (i.e., we first “see” the TDE at the first-half-max). This
figure demonstrates that we can reproduce the “data” obtained from the
disruption of the MESA star extremely well with a polytrope, but with a BH
mass that differs by nearly an order of magnitude from the true value.
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the more centrally concentrated nature of the MESA stars.11

The difficulty of fully disrupting real stars, and particularly
more highly evolved stars, implies that a greater fraction of the
events we observe will be partial, rather than full, disruptions
(though we note that stars spend more of their lives near the
ZAMS, where the MESA profiles still yield full disruptions for
β=3). It has recently been shown (Coughlin & Nixon 2019)
that TDEs that leave a bound core have a fallback rate whose
power-law index asymptotes to ≈−9/4 rather than the usual
−5/3. In each case that leaves a bound core, our simulations
recover this result. In future work we will explore whether
simulations are also capable of recovering, e.g., the time at
which the power-law slope changes to this value as a function
of the mass of the core that survives the encounter. We find (see
also Guillochon & Ramirez-Ruiz 2013) that in some cases, here
for the 1.0Me MAMS MESA star, that the core can be initially
fully disrupted but reform after leaving the tidal radius. We
attribute this to the velocity field imparted in the stellar debris
by the BH tides, which can at later times cause the stream to
converge along its width and augment the density within the
stream (Coughlin et al. 2016; Steinberg et al. 2019).

In Section 5 we described the impact of using realistic stellar
models in simulations of TDEs on the inference of the BH mass
from observed TDE light curves. We showed that for many
types of stars, and particularly those that are more massive at
the ZAMS or more highly evolved, the shape of the fallback
curves from simulations that employ polytropic stellar models
can lead to large errors in the estimated BH mass. Therefore,
employing accurate models for the imprint of stellar structure
on the fallback rate to produce templates for TDE light curves
appears essential for accurately inferring the BH mass. It could
also be that degeneracies between the parameters in TDEs (e.g.,
stellar mass, stellar age, stellar spin, stellar metallicity, BH
mass, BH binarity, BH spin, impact parameter, inclination and
phase angles of the stellar orbit, and the accretion dynamics on

small scales) mean that an unambiguous estimation of system
parameters (or at least an understanding of the true level of
error within those estimates) requires accurate and detailed
modeling of the stars that are being disrupted.
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Appendix
Stellar structure with PHANTOM

Figure 9 illustrates a comparison between the density profiles
obtained with MESA (red curves) and those obtained with
PHANTOM after the initial particle distribution has been relaxed
(black curves). For the 1Me TAMS star, the PHANTOM profile
overshoots the MESA one by about 10%, and the density of the
very outermost radii of the 3Me star (at all ages) is slightly
larger. However, in most cases the two curves are nearly
indistinguishable over the entire range in radius of the star.

11 This finding implies that the classical tidal radius, which depends on the
average stellar density, is only an indicator of the distance at which tides from
the BH become important for the majority of the star by volume, and not
necessarily the core.
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