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ABSTRACT 
 

History matching may be seen as an optimization problem based on minimizing an objective 
function that measures the mismatch between reservoir history and simulated data. Manual 
methods of history matching are largely cumbersome and grossly ineffective especially when the 
optimization parameters are large. Recourse to the manual method leads to development of models 
which cannot accurately predict the reservoir behaviour and thus are not suitable for predicting 
future behaviour of the reservoir. The only way out is the use of automatic methods especially those 
backed by artificial intelligence. The study aims at applying an automatic method to perform history 
matching in a reservoir model. The objectives will be to; Perform automatic history matching using 
ABC, match permeability distribution in the reservoir using oil production and bottom hole flowing 
pressure data and compare the effectiveness and convergence speed of the algorithm. History 
matching aims at fine-tuning the parameters used in building a reservoir model to closely match 
that of the real field. In this study, a very promising novel optimization algorithm has been employed 
to history a well-known reservoir model namely the PUNQ-S3 model. The model used for this study 
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is the popular PUNQ-S3 reservoir model. PUNQ (Production forecasting with Uncertainty 
Quantification) is a joint industrial-academic project with the aim of developing efficient history 
matching and uncertainty quantification methods. Results obtained proves the algorithm used to be 
a very efficient optimization tool as the data used as the history of the study is nearly equaled by 
the optimization tool. We therefore conclude that the ABC algorithm be employed in performing 
tasks that demand high degree of accuracy. 
 

 
Keywords: Matlab; eclipse; history matching; reservoir simulation. 
 

1. INTRODUCTION 
 

In order to better understand reservoir 
petrophysical parameters and fluid 
characteristics, reservoir engineers use reservoir 
simulation, a potent and crucial numerical 
modeling technique. It is primarily used to 
forecast reservoir behavior in various scenarios, 
which helps with field development decisions. 
The reservoir model's capacity to forecast 
reservoir behavior is one of its primary 
objectives. Validating a model presents a number 
of challenges because the majority of oil 
reservoirs are awkwardly buried behind 
thousands of feet of overburden. Only at well 
locations, which are frequently hundreds of 
meters away, are direct observations of the 
reservoir possible [1]. As a complicated nonlinear 
system, the reservoir itself is rarely fully 
understood with precision [2]. The performance 
of a model's prediction depends on accurate 
assessments of certain physical properties, such 
the reservoir's permeability distribution [3]. 
Computational models rely on a variety of 
reservoir metrics and features. The history 
matching procedure is one method of 
approximating these features.  
 

The process of modifying erratic reservoir 
parameters until a satisfactory match with the 
measured production data is achieved is known 
as history matching. When reservoirs have been 
in operation for a while, the inverse problem of 
estimating reservoir attributes can be solved by 
comparing simulated data to reservoir history [4]. 
The procedure aids in fine-tuning the simulation's 
reservoir parameters to match the real reservoir's 
data. The main objectives of history matching 
are: 
 

• Improve and validate the reservoir 
simulation model 
 

• Better understanding of reservoir 
processes 

 

• Improve the reservoir description and data 
acquisition program 

• Identify unusual operating conditions 
 
According to Riazi et. al., [5], the main stages of 
the history matching process involves:  
 

• selecting parameters,  
 

• defining the mathematical model,  
 

• defining the objective function,  
 

• sensitivity analysis and stop conditions  
 
The general strategy for history matching 
according to Ertekin et. al., 2002 is shown in           
Fig. 1. 
 
Historically, history matching was carried out 
manually by: 
 

1) Running simulation for historical period. 
 

2) Comparing results to actual field data 
 

3) Adjust simulation input to improve match 
 

4) Selecting input data based on knowledge 
and experience. 

 
Because so much data was usually involved, this 
history matching process was exceedingly 
laborious, time-consuming, and generally 
useless. This method is time-consuming and 
computationally expensive because to its 
complexity and lack of knowledge about the 
features of the reservoir. Because there are so 
many reservoir parameters, it is challenging to 
modify the parameters in order to get the match. 
Artificial intelligence (AI), a reliable technique that 
will carry out the task automatically in a more 
accurate but economical manner, is therefore 
required. The automatic methods that are 
currently in use solve the issues that the manual 
method left behind. The process involves utilizing 
optimization algorithms to reduce an objective 
function that gauges the discrepancy between 
the simulation findings and the observed 
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reservoir performance, up until a point at which 
the difference is deemed acceptable. Automatic 
methods used in the Petroleum industry are 
summarized as follows: 
 

• This category uses deterministic (gradient-
based) techniques like Direct Pattern 
Searching and the Descent Method. The 
primary difficulty with these approaches is 
calculating the gradients, which is often 
accomplished using one of two different 
approaches: the adjoint-based method or 
the finite difference (FD) method.  

 

• Some evolutionary algorithms, like         
Genetic Algorithm (GA), Evolutionary 
Strategy (ES), and, of course,                 
our ABC; these include evolutionary  
algorithms such as Simulated                  
Annealing (SA), PSO, and Simultaneous 
Perturbation Stochastic Approximation 
(SPSA). 

 

• A hybrid approach, which combines helper 
techniques and proxies (such as kriging 
proxies) with stochastic and deterministic 
methods.  

 
 

Fig. 1. General strategy for history matching 
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Only the Artificial Bee Colony (ABC) algorithm 
will be studied in this paper. Artificial intelligence 
is a powerful tool for automating processes. It is 
impossible to overstate how important historical 
matching is. data from utilizing the model can be 
highly trusted if the simulation's reservoir model 
closely resembles the real reservoir. This allows 
field development decisions to be made using 
the data with less anxiety or dread. All things 
considered, history matching increases the 
forecasting ability of simulation models by 
precisely adjusting the model's parameters to 
match those of the real-world reservoir, 
improving the model's effectiveness and 
accuracy.Optimization algorithms help to 
automate the otherwise cumbersome process 
making it iterative, more efficient, and accurate.  
 

2. LITERATURE REVIEW 
 
Although history matching is not a brand-new 
area of research in the field, it is essential to 
updating the model's attributes, which have 
previously been used to closely match the 
reservoir's features by comparing data collected 
in the field with data received from the model. 
The conclusions derived from the model cannot 
be implemented with confidence in the field 
because the majority of the data used to describe 
it at first are questionable. A better model of the 
real field can be achieved by fine-tuning the 
unknown parameters, and the resulting results 
can be relied upon. There have been attempts 
over the past 20 years to enhance automatic 
history matching in a way that may find practical 
use [6].  
 
There is still doubt regarding the viability and 
potential of these approaches to handle 
extremely complex real reservoir models, despite 
all of the attempts, because of the pace of 
complexity and resolution in the reservoir 
models. Because of this, automatic history 
matching is still a difficult and popular study area. 
The 1960s saw the beginning of the first 
historical matching research [7]. The primary 
methodology of the study involved developing 
mathematical reservoir models and calibrating 
them with real data. Using experimental design 
to create reaction surfaces in place of reservoir 
simulation in the history matching workflow was a 
significant innovation in the 1990s [8].  
 
Substantial efforts were made in the years after 
the early 1990s to transition history matching 
from an engineer-based framework that required 
a lot of labor to a completely or partially 

automated method [9]. In the late 1960s, history 
matching was done using gradient optimization 
techniques [7]. The notion of integrating a 
simulator and the Simultaneous Perturbation 
Stochastic Approximation (SPSA) approach for 
automatic history matching of multiphase flow 
production data was first proposed by Gao et al. 
(2004). A continuous Ant Colony Optimization 
(ACO) method is the foundation of the stochastic 
approach for automatic history matching 
presented by Hajizadeh et al. [10]. In this 
context, other stochastic algorithms have been 
studied. In history matching, evolutionary 
algorithms are becoming more and more used as 
a conventional optimization technique. These 
algorithms are generally inspired by the evolution 
theory.  
 
Numerous instances exist where these methods 
have been utilized for historical matching. The 
ensemble Kalman filter [11], genetic algorithms 
[12], particle swarm optimization (PSO) [13], Ant 
Colony Optimization (ACO) algorithm (Hajizadeh, 
et al., 2011), Markov chain Monte Carlo [14], and 
chaotic optimization [15] are a few of the 
techniques that have been successfully applied. 
A barrier for history matching procedures has 
been caused by reservoir models' increased 
complexity and simulation time. This is especially 
true for workflows using history matching and 
population-based sampling methods. Hundreds 
to thousands of simulation calls are needed for 
these algorithms to converge to optimal regions 
and identify history-matched solutions, 
depending on the number of uncertainty 
parameters. Due to this criterion, applications of 
stochastic population-based techniques for 
uncertainty quantification and real-world history 
matching have encountered well-known 
obstacles. Simultaneously, the limitation has 
spurred research efforts to shorten reservoir 
model simulation times. 
 

2.1 Two Distinct Areas form the Current 
Focus of Research Activities 

 
1) mathematical models to improve the 

physics-based simulation  
2) reduced order/data-driven approaches as 

a proxy to full field simulation.  
 

In many engineering domains, proxy models are 
widely employed as a low-cost approximation to 
complete field simulation models, which have 
substantial computational costs. Proxy models 
entered the field of petroleum engineering as a 
result of the reservoir simulation models' 
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increased cost and processing time. They 
develop quickly and with considerable ease. 
Nonetheless, there is still a long way to go before 
comprehensive field reservoir simulation models 
in reservoir management plans are fully achieved 
due to practical considerations. In petroleum 
engineering, the two most well-known types of 
proxy models are response surface models and 
reduced order models. Transforming the high 
dimensional models into a meaningful 
representation of lower dimensionality is the goal 
of reduced order modeling. Petroleum 
engineering is one of the numerous fields in 
which they have been used. In recent years, 
there have been some attempts in using reduced 
order models for history matching, uncertainty 
quantification, and optimization Gildin, et. al., 
(2014).  
 
Another strategy that has been rapidly 
developing recently is data-driven modeling. The 
foundation of data-driven modeling is machine 
learning analysis of the available data about a 
system. In particular, this method establishes 
links between various system components 
without requiring explicit knowledge of their 
physical characteristics. Data-driven modeling 
techniques include the use of fuzzy logic, artificial 
neural networks, and statistical techniques. 
Surrogate Reservoir Models (SRMs) are a 
relatively new class of data-driven models used 
in reservoir modeling and simulation. SRMs are 
designed to either supplement or replace 
reservoir simulation models. They are based on 
artificial intelligence and data mining techniques. 
 
A study by Shahkarami et al. [6] sought to 
determine how pattern recognition technologies 
might be applied to shorten the time and effort 
needed to finish a successful history matching 
project. The assisted history matching process is 
carried out by using data mining techniques and 
artificial intelligence's pattern recognition 
capabilities to create a Surrogate Reservoir 
Model (SRM). Their study's findings 
demonstrated how SRMs can support the history 
matching process in reservoir management 
workflows by aiding in the use of population-
based sampling techniques and other 
computationally demanding processes. 
 

A history matching problem aiming at estimating 
a reservoir's permeability field from the pressure 
and flow rate recorded in the wells was 
introduced by Amorim et al. [4]. The two-phase 
incompressible flow model served as the 
foundation for this reservoir simulation. The 

Gauss-Newton and Truncated Singular Value 
Decomposition (TSVD) techniques are combined 
in this method. They claimed that the number of 
grid blocks utilized to discretize the reservoir 
determined the number of parameters that 
needed to be approximated. This value was 
generally high, and the inverse problem was 
poorly formulated. The TSVD approach 
regularizes the problem and significantly reduces 
the amount of computing power required to solve 
it.  They combined the Lanczos approach with 
numerical implementations of the adjoint 
formulation of the problem and the derivative to 
compute the TSVD. Zhang et al. [2] carried out 
automatic history matching in a numerical 
reservoir model by utilizing an enhanced GA. 
The study's total water cut of the blocks served 
as the observed data, while the relative 
permeability curve, average interlayer 
permeability values, and permeability coefficient 
of variation among layers served as the study's 
modifiable parameters. Their study's findings, 
which demonstrated the method's strong 
reliability and quick convergence speed, were 
verified using the SZ 36-1 typical reservoir of the 
Bohai oilfield. They came to the conclusion that 
the approach works as a result. Xavier et. al., [3] 
presented a study of GA for the history matching 
problem of reservoir 2D flow simulation model. In 
their work, they studied the effect of parameter 
adjustment to the algorithm performance. 
 
Using Least Square Support Vector Machine 
(LSSVM) as a proxy model and the PSO and 
Imperialist Competitive Algorithm (ICA) as base 
optimization algorithms, Riazi et al. [5] performed 
history matching on a fractured reservoir model. 
Their method involves building a proxy model 
based on the field's historical data to represent 
the history match objective function (mismatch 
values). Next, using PSO and ICA, this model is 
applied to minimize the objective function. The 
approach is effective for the history matching 
process, as demonstrated by the obtained 
results, because of its strong reliability and quick 
convergence. They concluded that due to high 
speed and need for small data sets, LSSVM is 
the best tool to build a proxy mode. Also, the 
comparison of PSO and ICA shows that PSO is 
less time-consuming and more effective. 
 
Afiakinye [16] optimized well location using a 
modified version of the ABC algorithm. The basic 
ABC algorithm has been modified to prevent 
visits to sites that have previously been visited 
and to handle the process of pushing out-of-
boundary points back into the feasible search 
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zone more effectively. The study's findings 
demonstrate that the updated algorithm 
outperforms the original algorithm. 
 

2.2 The optimization tool to be used in 
this study is the Artificial Bee Colony 
and is discussed as follows 

 

2.2.1 Artificial bee colony algorithm 
 

Among the swarm algorithms is ABC. An 
assembly of fish, birds, and insects like termites, 
ants, and bees is referred to as a swarm. Due to 
their observation of their surroundings, the 
individual agents within the swarm act in an 
unsupervised manner and exhibit stochastic 
behavior. The networks of interactions between 
these simple agents and between agents and 
their surroundings are what give the swarm its 
intelligence. Typically, the first ABC solutions are 
produced at random and refined during the 
optimization process. The first answers are 
derived from equation (3). 
 

𝑥𝑗(𝑖) = 𝐿𝐵𝑖 + (𝑈𝐵𝑖 − 𝐿𝐵𝑖) × 𝑟                      (1) 
 

Where r ~ (0, 1) is a random number between 0 
and 1. 
 

The neighborhood of the solution that needs to 
be enhanced is where improvements are made 
to solutions. Usually, a fixed number of cycles, 
known as the limit, are given to enhance a 
randomly produced solution. When this limit is 
reached, the solution is dropped, and a randomly 
generated new solution takes its place. The 
procedure is then repeated until the user-
specified stopping condition is satisfied. Because 
ABC uses so few parameters to operate, it is 
comparatively easy to build. Basically, three 
kinds of bees are defined in the algorithm thus: 
 

• Worker Foragers: These bees are linked to 
certain food supplies. Food sources are 
described as possible fixes for the issue at 
hand. Their duties include gathering and 
storing data regarding a specific food 
source, as well as informing other bees in 
the hive about its position and nectar 
quality (fitness). This duty also includes the 
perturbation (creation of a trial solution in 
the immediate vicinity of the existing food 
source) and the assessment of the fitness 
value of the new (perturbed) food source. 
This is done using equation (4) 

 

𝑣(𝑖, 𝑗) = 

𝑥(𝑖, 𝑗) + 𝑟𝑎𝑛𝑑[−1,1](𝑥(𝑖, 𝑗) − 𝑥(𝑘, 𝑗))            (2) 

Here,
  𝑗ϵ (1,2, … , D) and k ϵ (1,2, … , SN) where (k ≠
i)  are randomly generated indices and rand [-1, 
1] is a random number in the range [-1, 1], which 
works as a scaling factor. SN is the population or 
colony size and D is the dimension of the of the 
optimization problem. The old food source is 
perturbed until the designated limit is reached, at 
which point it is abandoned and a new source is 
generated. If the fitness of the perturbed solution 
is greater than that from which it was formed, 
then the new solution replaces the old one in the 
employed forager's memory. This is a greedy-
selection scheme. 
 

• Onlooker Bees: These bees watch as the 
employed foragers circle a food source. 
Using the information they exchange, they 
determine the likelihood that they will 
select that specific food source and 
compare it to a number that is created at 
random between 0 and 1. Equation (5) is 
used to determine the probability values Pi 
for the solutions xi based on their fitness 
values. 

 

𝑃𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑆𝑁
𝑖=1

                                                     (3) 

 
Where fiti is the fitness value of solution xi. Pi 
values were normalized into [0, 1].  
 
In order to calculate the fitness values of 
solutions, equation (6) was employed: 
 

𝑓𝑖𝑡𝑖 = {

1

1 + 𝑓𝑖

𝑖𝑓 𝑓𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑖) 𝑖𝑓 𝑓𝑖 < 0

}                      (4) 

 
Here, fi  is the value of the objective function for 
solution xi.  
 
Only when a food source's fitness exceeds the 
number that is randomly generated is it selected; 
this food source is then committed to memory, 
and the observing bee uses equation (4) to 
create a new trial solution in the vicinity of the 
best solution. If this new solution proves to be 
more fit than the prior one in her memory, the 
onlooker bee will also employ the greedy-
selection technique.  
 

• Scout bees: These bees are recruited by 
the onlooker bees to randomly choose new 
food sources around the entire search 
space to replace food sources that could 
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not be improved within the set limit. They 
are different in their operation to the other 
previously described bees in the sense 
that they are not bounded to generating 
food sources around old sources so as to 
improve them but can generate food 
around the entire search space without 
exiting it. In the procedures above, it is 
presumed that an onlooker bee whose 
food source has sufficiently depleted, or 
cannot be improved after reaching the 
specified limit becomes a scout bee. 

 

3. MATERIALS AND METHODS 
 

3.1 Simplification of Reservoir Model 
 
According to Goda et al. (2010), there are so 
many unknowns surrounding reservoir 
parameters during the reservoir history matching 
process that it takes a long time to change a lot 
of model parameters for a brief period of time 
and can easily lead to non-convergence in 
automatic history matching. The permeability 
vector, designated by K, is the model parameter 
that needs to be optimized in this study in order 
to increase fitting accuracy and decrease 
optimization time. 
 

3.2 Theory 
 
In the oil sector, history matching is a well-known 
inverse problem [1]. In the forward problem, the 
reservoir's physical characteristics are known, 
and its production behavior is computed via a 
simulator. Given the observed production data of 
an actual reservoir, the objective of the inverse 
problem (history matching) is to predict probable 
physical attributes of the reservoir. The history 
matching procedure is used to estimate the 
physical parameters of the reservoir because 
they cannot be physically monitored in all of its 
extensions. The purpose of using the predicted 
attributes as simulator parameters is to forecast 
reservoir behavior under various production 
scenarios. The objective of this work's inverse 
problem is to estimate a reservoir's absolute 
permeability field by history-matching its 
production data, which is provided by the oil rate 
and bottom-hole pressure periodically observed 
at well locations. We indicate the to-be-
determined permeability by K, the simulated data 
given the parameter K by S(K), and the observed 
data by O. Finding K that minimizes the least 
square formulation is the problem. 
 

𝑓(𝐾) = ‖𝑆(𝐾) − 𝑂‖2                                            (5) 

The problem to be solved is then formulated as a 
minimization problem thus, 
 

min 𝑓(𝐾)                                                                 (6) 
 

In the context of Evolutionary Algorithms, f (K) is 
called fitness function on dealing with 
Evolutionary optimization algorithms. Its 
importance will be elucidated in the following 
sections. In this work we transform the fitness 
function in a relative error measurement, as 
follows 
 

𝑓(𝐾) =
‖𝑆𝑜(𝐾)−𝑂𝑜‖2

‖𝑂𝑜‖2 +
‖𝑆𝑝(𝐾)−𝑂𝑝‖

2

‖𝑂𝑝‖
2                    (7) 

 

Where subscript o and p denote oil rate and 
bottom-hole pressure observations, respectively. 
 

3.3 Implementation Details and Computer 
Platform 

 

The algorithms will be implemented in Matlab® 
2015 run on an HP Intel Pentium processor of 
4.0GB RAM, 500GB Hard disk and 2.2GHz 
processing speed. The modelling of the 
ereservoir will be done with ECLIPSE 100® run 
on the same system. 
 

3.3.1 Matlab 
 

The proprietary multi-paradigm programming 
language and numerical computing environment 
known as MATLAB (an acronym for "MATrix 
LABoratory") was created by MathWorks. It 
enables the design of user interfaces, the 
execution of algorithms, the graphing of functions 
and data, matrix manipulations, and interfaces 
with programs written in other languages 
(Wikipedia, 2022). Millions of scientists and 
engineers use MATLAB to build models, design 
algorithms, and analyze data. It blends a 
programming language that represents matrix 
and array mathematics directly with a desktop 
environment tailored for iterative analysis and 
design processes. It comes with the Live Editor, 
which is used to write scripts that integrate 
formatted text, code, and output into an 
executable notebook (Mathworks, 2022). 
MATLAB is a high-performance language for 
technical computing. It integrates computation, 
visualization, and programming in an easy-to-use 
environment where problems and solutions are 
expressed in familiar mathematical notation.  
 

Typical uses include: 
 

• Math and computation 
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• Algorithm development 
 

• Modeling, simulation, and prototyping 
 

• Data analysis, exploration, and 
visualization 
 

• Scientific and engineering graphics 
 

• Application development, including 
Graphical User Interface building 

 

An array is the fundamental data element in 
MATLAB, an interactive system that doesn't 
need to be dimensioned. This makes it possible 
to complete a lot of technical computing tasks 
more faster than you could if you were writing a 
program in a scalar, noninteractive language like 
C or Fortran. This is especially true for problems 
involving matrix and vector formulations. With the 
help of numerous users throughout the years, 
MATLAB has changed over time. It is the typical 
teaching aid in university settings for beginning 
and advanced science, engineering, and math 
classes. MATLAB is the preferred tool in industry 
for highly productive research, development, and 
analysis. Toolboxes are a kind of application-
specific solutions available in MATLAB. 
Toolboxes are essential for the majority of 
MATLAB users since they let you learn and use 
specialist technologies. A toolbox is an extensive 
set of MATLAB functions (M-files) that enhances 
the MATLAB environment to address specific 
issue classes. Toolboxes are available for many 
different domains, such as simulation, wavelets, 
fuzzy logic, neural networks, control systems, 
and signal processing. 
 

3.4 The MATLAB System 
 

The MATLAB system consists of five main parts: 
 

3.4.1 The MATLAB language 
 

Control flow statements, functions, data 
structures, input/output, and object-oriented 
programming capabilities are all included in this 
high-level matrix/array language. It enables 
"programming in the large" to develop 
comprehensive, large-scale, sophisticated 
application programs as well as "programming in 
the small" to quickly create short, dirty, throw-
away programs. 
 

3.4.2 The MATLAB working environment 
 

This is the collection of resources and tools 
available to you as a programmer or user of 

MATLAB. It has tools for managing the variables 
in your workspace as well as data input and 
export capabilities. It also comes with tools for 
creating, organizing, troubleshooting, and 
profiling M-files, which are programs used with 
MATLAB. 
 
3.4.3 Handle graphics 
 
The MATLAB graphics system is this. High-level 
commands for image processing, animation, 
presentation graphics, and two- and three-
dimensional data visualization are included. It 
also comes with low-level instructions that let you 
create entire Graphical User Interfaces for your 
MATLAB applications and completely change the 
look of graphics. 
 
3.4.4 The MATLAB mathematical function 

library 
 
This is a huge collection of computing algorithms 
that includes more difficult functions like matrix 
inverse, matrix eigenvalues, Bessel functions, 
and rapid Fourier transformations, as well as 
more basic functions like sum, sine, cosine, and 
complex arithmetic. 
 
3.4.5 The MATLAB application program 

interface (API) 
 
Using this library, you can create C and Fortran 
programs that communicate with MATLAB. It has 
tools for reading and writing MAT files, calling 
MATLAB as a computational engine, and calling 
MATLAB routines (dynamic linking). 
 
3.4.6 Eclipse 
 
The most comprehensive and reliable collection 
of numerical solutions available to the industry 
for quick and precise dynamic behavior 
prediction for all kinds of reservoirs and 
development plans is provided by the ECLIPSE 
industry-reference simulator. For over 25 years, 
the ECLIPSE simulator has set the standard for 
commercial reservoir simulation because of its 
wide range of features, stability, speed, parallel 
scalability, and unparalleled platform support. 
 
The ECLIPSE simulator is the most feature-rich 
and complete reservoir simulator available, 
including all reservoir models, including black oil, 
compositional, thermal finite-volume, and 
streamline modeling. It has been developed and 
innovated over 30 years. Your reservoir modeling 
skills can be improved by customizing the 



 
 
 
 

Ndubuka and Ita; J. Eng. Res. Rep., vol. 26, no. 6, pp. 371-387, 2024; Article no.JERR.116622 
 
 

 
379 

 

simulator's capabilities with a variety of add-on 
options, including advanced wells, reservoir 
coupling, surface networks, coalbed methane, 
local grid refinements, and gas field operations. 
 
The ECLIPSE simulator, which is in use at more 
than 800 locations across 70 countries, benefits 
from the highest caliber of reservoir engineering 
knowledge in the sector. In addition to being 
widely utilized by academic institutions, 
regulatory bodies, and petroleum financial 
planners, the ECLIPSE simulator is the industry 
standard for modeling in the petroleum sector. 
The ECLIPSE simulator is widely regarded as 
the best reservoir simulator in the business, as 
shown by its citations in more than 1,500 SPE 
technical publications. 
 

3.5 Case Study 
 
The well-known PUNQ-S3 reservoir model 
served as the model for this investigation. The 
goal of the collaborative industry-academia 
project PUNQ (Production forecasting with 
UNcertainty Quantification) is to provide effective 
techniques for uncertainty quantification and 
history matching. The PUNQ-S3 reservoir 
simulation model is a five-layer model, according 
to Floris [Floris et al. 2001]. The PUNQS3 
reservoir's maximum depth is 2430 meters. It is 
surrounded by a fault to the east and south, with 
a moderately strong aquifer to the north and west 
providing pressure support. It has a dip angle of 
around 1.5 degrees. In this reservoir, no injection 
wells have been drilled due to the pressure 
support. In layer 1 of the PUNQ-S3 reservoir 
model, there is also a tiny gas cap.  
 
This layer has no completed wells due to the 
impact of free gas production on reservoir 
recovery. Fig. 1 shows that six producing wells 
are designated with black dots. The first gas-oil 
contact is close to where these wells are 
situated. Perforations are found in layers 4 and 5 
for Producers 1 (PRO-1), 4 (PRO-4) and 12 
(PRO-12). Producers 5 (PRO-5) and 11 (PRO-
11) have finished layer 3 and layer 4, whereas 
producer 15 (PRO-15) has just layer 4 
perforation. Near an aquifer, PRO-4 has been 
finished, and in the seventh year, water 
breakthrough has been seen. In PRO-1 and 
PRO-4, free gas production begins in the fourth 
and fifth year. 
 

About two thirds of the 19 by 28 by 5 grid blocks 
(1761) in the PUNQ-S3 model are active. The 
180-meter sides of the grid blocks are equal in 

both the x and y axes. The Carter-Tracy aquifer 
type's corner point geometry was used to model 
the reservoir simulation example. The whole 
reservoir data set is accessible online [PUNQ 
2010]. A common benchmark model for 
evaluating and contrasting the innovative 
techniques created for uncertainty quantification 
and history matching is the PUNQ-S3 reservoir 
model. The findings of numerous others' studies 
on the PUNQ-S3 reservoir model have been 
published. For the history matching of this model, 
Soleng employed a steady state genetic 
algorithm [Soleng, 1999].  
 
Using the PUNQ-S3 scenario as an example, 
Manceau [Manceau et al. 2001] introduced an 
integrated approach for history matching and 
uncertainty analysis based on gradual 
deformation techniques and Fast Fourier 
Transform-Moving Average (FFTMA) methods. 
Using the same reservoir model, Mantica 
combined progressive deformation with chaotic 
optimization [15]. Demyanov used a 
geostatistical framework in conjunction with the 
Neighbourhood Algorithm (NA) to match the 
PUNQ-S3 model's history [Demyanov 2004]. 
Gao evaluated two different versions of the 
Simultaneous Perturbation Stochastic 
Approximation (SPSA) method on the PUNQ-S3 
reservoir in order to solve the reservoir history 
matching problem [Gao et al. 2007]. 
 

3.6 Methods 
 

1. The parameter that needs to be matched is 
the field's permeability distribution. 
 

2.  An objective function has to be 
constructed in order to use an optimization 
technique for history matching. The 
objective function calculates the 
discrepancy, or mismatch, between the 
reservoir history and the simulated data 
produced by ECLIPSE 100 following each 
simulation.  
 

3. The algorithm uses this function to assess 
how good of a match is. Equation 9 defines 
the objective function used in this 
investigation. 
 

4. The ABC algorithm creates a new 
permeability based on the objective 
function's value.  
 

5. A simulation in ECLIPSE 100 is performed 
using the generated permeability. For each 
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simulation run, data are generated. The 
data so generated are read by Matlab          
and used in calculating the objective 
function.  
 

6. The objective function is computed and 
then submitted to the ABC algorithm, 
which iteratively generates a new 
permeability value based on the objective 
function's value. 
 

7. When the objective function reaches a 
user-defined maximum number of 
optimization cycles or a predetermined 

minimum value, optimization is said to 
have finished.  

 

4. RESULTS AND DISCUSSION 
 
The PUNQ-S3 model's petro-physical 
characteristics are displayed in Figs. 2–5. The 
study's variables are the well sites' permeability 
values from the reservoir model, whilst the 
model's history is derived from the well bottom-
hole pressures and oil production rate. As a 
result, these were matched using the ABC 
method, with the matching results shown in             
Fig. 2. 

 

 
 

Fig. 2. Fluid saturation distribution in the model 
 

 
 

Fig. 3. Porosity distribution in the model 
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Fig. 4. Permeability distribution in the model 
 

 
 

Fig. 5. Aquifer bound around the model 
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Fig. 6. Well bottom hole flowing pressure for Well 1 
 

 
 

Fig. 7. Oil production rate for Well 1 
 

\ 
 

Fig. 8. Well bottom hole flowing pressure for Well 4 
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Fig. 9. Oil production rate for Well 4 
 

 
 

Fig. 10. Well bottom hole flowing pressure for Well 5 
 

 
 

Fig. 11. Oil production rate for Well 5 
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Fig. 12. Well bottom hole flowing pressure for Well 11 
 

 
 

Fig. 13. Oil production rate for Well 11 
 

 
 

Fig. 14. Well bottom hole flowing pressure for Well 15 
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Fig. 15. Well bottom hole flowing pressure for Well 12 
 

 
 

Fig. 16. Oil production rate for Well 12 
 

 
 

Fig. 17. Oil production rate for Well 15 
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Table 1. ABC algorithm parameters 
 

Stopping criteria 100 cycles 
Objective function 3.2369 

 
Optimization in this procedure involves the 
minimization of the defined objective function. 
The objective function essentially measures the 
difference between the generated simulated data 
at a given permeability and the data in the 
reservoir history. For each permeability 
distribution generated by the algorithm, 
simulation is run and the objective function 
calculated. This continues until a predefined 
stopping condition is reached. 
 
The result gotten is summarized in Table 1. 
 
It can be seen from Figs. 6 to 17 that the history 
of the reservoir is very closely matched in this 
study. Very slight insignificant variations are seen 
for the bottom hole flowing pressures of all the 
wells excepts well 4. 
 
This shows the method used to be very accurate.  
 

5. CONCLUSION 
 
History matching aims at fine-tuning the 
parameters used in building a reservoir model to 
closely match that of the real field. In this study, a 
very promising novel optimization algorithm has 
been employed to history a well-known reservoir 
model namely the PUNQ-S3 model. 
 
Results obtained proves the algorithm used to be 
a very efficient optimization tool as the data used 
as the history of the study is nearly equaled by 
the optimization tool. 
 
We therefore conclude that the ABC algorithm be 
employed in performing tasks that demand high 
degree of accuracy. 
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