

International Research Journal of Pure & Applied Chemistry

22(6): 47-52, 2021; Article no.IRJPAC.72306 ISSN: 2231-3443, NLM ID: 101647669

Concentration effect of Sodium Chloride Salt on Benzoic Acid Solubility and Dissociation into Water at 298 K Temperature

Shiv Prakash Mishra^{1*}

¹Faculty of Science, Dr. Ram Manohar Lohia Avadh University, Ayodhya-224001, (U.P.), India.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/IRJPAC/2021/v22i630416 <u>Editor(s):</u> (1) Dr. Wolfgang Linert, Vienna University of Technology, Austria. <u>Reviewers:</u> (1) Manish Srivastava, Banasthali University, India. (2) K. P. Srivastava, Jai Praksh University, India. Complete Peer review History: <u>https://www.sdiarticle4.com/review-history/72306</u>

Review Article

Received 05 June 2021 Accepted 10 August 2021 Published 14 August 2021

ABSTRACT

In article, we have been reported the study of a concentration effect of sodium chloride (NaCl) salt on benzoic acid solubility and its dissociation in water at 298 K temperature. At this temperature the benzoic acid solubility into water and their dissociation value for six samples in range of 0.00, 0.05, 0.10, 0.30, 0.40 and 0.50 M. Each of these different ionic strength or concentration of sodium chloride is analyzed by titrimetrically against of 0.05 M sodium hydroxide (NaOH) basic solution. The pH of each solution is measured well by using of calibrated pH-meter. Observation reveals that the value of pH of benzoic acid into water at applying temperature is may inversely related with concentration of NaCl. Graphically, the value of ionic strength (I) of that benzoic acid is plotted versus with dissociation constant (Kc) of acid into water at specific 298 K temperature. The value of benzoic acid dissociation constant for given each six concentration of NaCl is found to be -4.169, -4.045, -3.993, -3.845, -3.848 and -3.788, respectively.

Keywords: Sodium chloride; benzoic acid; solubility; dissociation constant; ionic strength.

1. INTRODUCTION

Each substance has a characteristic solubility in a given solvent because solubility depends on

various factors such as temperature, intermolecular forces, solute-solvent interaction with its dissociation into ionic form and polarnonpolar behavior of substance etc. The

*Corresponding author: E-mail: drspm9000@gmail.com;

solubility distribution of solute and in solvent have performed earlier [1], but it proved well by Nernst [2]. The solubility is defined as the concentration of the solute in solution when it is in equilibrium with the solid substance particular temperature and often at а expressed in terms of number of grams of it that can be dissolved in 100 grams of solvent. The solubility of substance is determined bv preparing its saturated solution and then finding the concentration by evaporation or a suitable chemical method. An increase in temperature generally causes a rise in the solubility, but not always rise for all substances due to continuous and discontinuous solubility terms. Sodium chloride (NaCl) salt is an electrolyte and fairly soluble in water which is highly polar solvent, while it is insoluble in a nonpolar solvent like benzene (C₆H₆), carbon tetrachloride (CCl₄) or chloroform (CHCl₃) etc. Here electrical attraction between the oppositely charged end of the solute and the solvent molecules results to form a solution. When ionic substance is placed in polar solvent which ionized to solute with furnishes of cation (+) and anions (-). For example, NaCl dissolves in water to give solvated or hydrated Na⁺ and Cl⁻ ions [3], although, NaCl dissociation is may verify by change of enthalpy, ΔH° with Born-Haber base [4].

Here, we have reported the study of behaviour of sodium chloride (halite) concentration on solubility of benzoic acid and its dissociation in water at 298 K temperature. Although, literature survey have revealed about solubility and dissociation ratio of benzoic acid in aqueous NaCl medium at specific temperature [5]. Knowing, Sodium chloride (NaCl) salt is an ionic solid compound which having a 1:1 ratio of sodium and chloride ions. The pH of sodium chloride is 7.0 (neutral) and molecular weight as 58.44 g/mol. The density of it is 2.165 g/cm³ with 801°C and 1413°C its m.p. and b.p., respectively. Salt of NaCl is formed by the reaction of strong (HCI) acid and strong (NaOH) base and thus it ionize easily in aqueous solvent with highly solubility. In series of aromatic acids the benzoic acid (C₆H₅COOH) is a colorless crystalline solid substance having m.p. 121-122°C with pleasant smell and poor solubility in cold water [6]. In early of 20th century its salt has been used in industrial and medicinal purposes as well [7]. In chemical science the ionization of benzoic acid having a great interest with respect to temperature. The carboxylic group of acid is polarize during on dissociation partially in water

Mishra; IRJPAC, 22(6): 47-52, 2021; Article no.IRJPAC.72306

by forming H-bonding, and to produce benzoate anion ($C_6H_5COO^{-}$) and hydronium cation (H_3O^{+}).

$$C_6H_5COOH + H_2O \rightarrow C_6H_5COO^- + H_3O^+$$

The addition of small amount of benzoic acid (solute) salt into water as solvent gives rise a slightly changing due to water-water as well as solute-solvent interactions [8]. When salts as (NaCl or C_6H_5COOH) is put into solvents then it try to get dissolve and ionize with its ionic strength [9]. The sodium chloride (NaCl) is act as an electrolyte for to increase the ionic strength and its value in aqueous solutions of benzoic acid particularly with molar concentration of NaCl [5]. Although, in aqueous solution (*aq*), a little molar solubility of benzoic acid with weak electrolyte behavior [10]. The dissociation equilibrium of benzoic acid in basic or anionic form is follow these reaction-

$$C_6H_5COOH(aq) \rightarrow H^+(aq) + C_6H_5COO^-(aq)$$

In this work, for given temperature range the molar solubility of benzoic acid in aqueous (water) is determined by titrimetrically against NaOH solution as standard strong base with study of dissociation constant (*Kc*) and different value of ionic strengths for acid. The equilibrium can expressed as-

 $Kc = [H^+][C_6H_5COO^-] / [C_6H_5COOH(aq)]$ (1)

2. MATERIALS AND METHODS

In this study, all the required chemicals have been used as of analytical reagent grade with without further purification. The water have used as solvent throughout the experimental, which is distilled well three times. Typically, the basic solution of NaOH which are carbonated free have prepared well as suggested by adopting Vogel procedure [11]. These test solutions is made of reagent grade as benzoic acid, NaOH and NaCl stock solutions with ionic strength and purified distilled water. The protolytic purity of benzoic acid have checked by using titration against a standared solution of NaOH. In this work those calibrated volumetric glassware used which is of class 'A' as well. In preparation of solution, we take a cleaned and dry six stoppered bottles of 250 ml and crystalline solid benzoic acid. Weigh the 1.00 g of benzoic acid and it is placed in each of six dry bottles. Now, in each bottles we are prepared a 100 ml of sodium chloride (NaCI) solution by using volumetric flask (100 ml) of different concentrations as of 0.00.

0.05, 0.10, 0.30, 0.40 and 0.50 M. These prepared different molar solutions is then poured in each benzoic acid containing bottles and shaking it vigorously and also then put in a thermostate for 2 hours, at 298 K as room temperature. Here, now we are pipette out a 20.0 ml of solutions from each bottles with filtering to prevention of withdrawing small solids in pipette. After removing the filtering, then it discharged into another conical flask of 250 ml. In each of solutions the NaCl concentration with benzoic acid is determined by applying titration method with NaOH solution of 0.050 M. By using 3 decimal digits calibrated pH meter we are measured the pH of each solutions at specific temperature.

3. RESULTS AND DISCUSSION

Herein, the ionic effect of salt on solubility and dissociation of benzoic acid in water at room temperature (298 K) have been reported for six different samples in range of 0.00, 0.05, 0.10, 0.30, 0.40, and 0.50 M by adding sodium For chloride (NaCl) salts. six different concentration of NaCl, the benzoic acid solubility in water is analyze by followed to applying titration method as described by Khouri [12], and also measured the pH of each solutions. Here, the Table 1 we have shown the experimental data of finding average results with their measurements. Where from the volume of 0.05 mol/litre of sodium hydroxide (NaOH) solution, the benzoic acid solubility and pH value in aqueous water inverselv related with concentrations of NaCl. Table 1 show at six different molar concentration of NaCl, the equal volume (20.0ml) benzoic acid solution is used for each, where the value of molar solubility (α) and dissociation constant (Kc) of acid has been found to be from 0.0215 to 0.0265, and -3.788 to -4.169 respectively. Graphically, this estimated value of dissociation constant (*Kc*) in terms of logarithm as log *Kc* is ploted against ionic strength (I) as volume of NaCl in different range has used for benzoic acid solution at 298 K temperature (as in Fig. 1). This reported value is compared with literature value for *Ka* which may obtaining from the extrapolation to zero ionic strength by using calorimetry [13], or other methods [14-16].

Thermodynamically, at a given temperature the benzoic acid dissociation constant or apparent dissociation constant (*Kc*) is correlated to *Ka* [17], which have compared from data of Strong *et al* [18]. Where, the *Ka* is a thermodynamic dissociation constant at infinite dilution of solution with mean activity coefficient (γ ±) of the dissociated and undissociated ions of benzoic acid as expression, *Ka*= *Kc*. γ ²± [12]. From this relation, mathematically, the mean activity coefficient of dissociated ions for solution is calculated by using of following equation-

$$\log (\gamma \pm) = 1/2 (\log Ka - \log Kc)$$
(2)

or,
$$\log Ka + 2B \sqrt{I} = \log K$$
 (3)

where, the B, and, I is a quantity and ionic strength respectively, which is effected or depend upon various physical property of solutions such as including temperature [19], pressure (as Read's data) [20], and chemically electrolytic properties [21]. At room temperature (298 K), for aqueous solutions, the equation (3) can becomes-

$$\log Ka + 1.02 \sqrt{I} = \log Kc \tag{4}$$

The dissociation constant (*Kc*) and to finding the pH value for each solution is determined by using the following given modified equation (5), which are derived from equation (1)-

Table 1. The concentration effect of sodium chloride salt on solubility and dissociation of benzoic acid into water at 298 K

S.N.	V of NaCl (in mol/l)	<i>V</i> of benzoic acid solution (in /ml)	V of 0.05 (mol/l) NaOH (in /ml)	рН	α	Кс
1.	0.00	20.0ml	10.61 ± 0.014	2.884 ± 0.005	0.0265	-4.169
2.	0.05	20.0ml	10.19 ± 0.010	2.832 ± 0.005	0.0255	-4.045
3.	0.10	20.0ml	9.92 ± 0.009	2.813 ± 0.003	0.0248	-3.993
4.	0.30	20.0ml	9.51 ± 0.012	2.789 ± 0.005	0.0238	-3.885
5.	0.40	20.0ml	9.09 ± 0.011	2.763 ± 0.003	0.0227	-3.848
6.	0.50	20.0ml	8.58 ± 0.011	2.747 ± 0.007	0.0215	-3.788

Fig. 1. The plot of value of dissociation constant (*Kc*) versus ionic strength (I) of benzoic acid in water at 298 K

$$Kc = (10^{-pH})^2 / \alpha - 10^{-pH})$$
(5)

Here, the α is a total molar solubility of benzoic acid and their benzoate or hydrogen ions in the aqueous solution, as [(C₆H₅COOH_(aq)) or (C₆H₅COO⁻) = (H⁺) = 10^{-pH}], which can be determined from given such following equation-

$$\alpha = (V_{\text{NaOH}} \times M_{\text{NaOH}}) / V_{(\text{Benzoic Acid})}$$
(6)

Where, the V_{NaOH} , M_{NaOH} and $V_{(Benzoic Acid)}$ are the volume of NaOH (litre⁻¹), molarity of NaOH (per mol /L), and volume of benzoic acid (litre⁻¹) respectively.

At 298 K temperature the solubility and dissociation constant (*Kc*) value of benzoic acid in water for NaCl solution a same concentration used at same temperature, which are estimated by titrimetrically. If temperature increase in range between 298 to 303 K, the value of Kc is may inversely proportional, but it may contrast, because as temperature further increase in range of between 303 to 314 K the Kc value is directly proportional with temperature. There are no actually correlation between dissociation constant of benzoic acid and the temperatures range which is used. Thus from the data of experimental, in titration the used NaOH amount

and the pH value for used each temperature. the benzoic acid solubility between water is directly proportional with temperature and benzoic acid molecule's capability which to dissociate is not increases always as increases of temperature. Although, by thermodynamic study there are no revealing of dissociation process well. The dissociation of benzoic acid in water is as endothermic and reports to energy change to be positive which lead to dissociation process of acid molecule is nonspontaneous. If value of energy change becomes negative it means that in water the acid is attain a highly ordered state during after its process of dissociation. The solubility and dissociation of benzoic acid in water having different behaviour at higher temperature than above 303 K. As increases the temperature the benzoic acid capability to dissociation is decreases with reducing value of Kc. In this range of temperature the process is being exothermic with the compatibility to principle of Le Chatelier [12,22]. The acidic strength of benzoic acid is effected by temperature change which lead to inductive effect inside the acid molecule and can reveals the charge movement through atoms in molecule of acid resulting the polarization of bond in continual state [23]. Benzoic acid molecules show less acidic behavior at over 303

K temperature because effect of electron releasing group is decreases inside the molecule of acid on acidic hydrogen [18].

In repeating of same adapted titration procedure at 298 K temperature as six more time where the benzoic acid solubility is same for NaCl concentration in water with pH measuring of each solution. But at range of temperatures between 289 K and 314 K, the results average is show a high precision for volume (V) of NaOH and pH values. At these temperature the value of dissociation constant (Kc) for used each concentration of NaCl is determined by applying of same methodology as used in case of 298 K for each temperature. Notably, the volume of each solutions is temperature dependent due to thermal expansion. there thus thermodynamically, the molarity which used is may not convenient. These problem can be resolve with maintaining equal concentration of sodium chloride for used all temperatures. For this work we are testing that the decrease or increase in volume of NaCl solution inside the volumetric flask (100ml) at selected each temperature which relative to standard flask's volume at 293 K. Then NaCl solution is prepared with the volume of starting less or more than 100 ml as to be 100 ml exactly with selected temperature when thermal equilibrium attained inside the thermostat. In dissociation process of benzoic acid a Debye-Huckel limiting law can apply for improve to finding more results. although, at higher accurate pressure (in bar) temperature and the dissociation of acid or any solute with infinity dilution the thermodynamic parameters is retrieved [18,20,24].

4. CONCLUSION

In conclusion, we have reported the study of a concentration effect of sodium chloride (NaCl) salt on benzoic acid solubility and its dissociation in water at 298 K temperature. Knowing, the solubility of solute in given solvents is depend on temperature, pressure, intermolecular forces, dielectric constant, pH value, solute-solvent interaction and dissociation of solute in solvent into ionic form etc. At 298 K temperature the benzoic acid solubility into water and their dissociation at six range of 0.00, 0.05, 0.10, 0.30, 0.40 and 0.50 M as for each different ionic strength or concentration of sodium chloride have been analyzed by titrimetrically against of 0.05 M sodium hydroxide (NaOH) solution. Here, the pH of each solution is measured well by using of calibrated pH-meter. The observation reveals that the pH value of benzoic acid into water at given temperature is may inversely related with concentration of NaCl. In graphically, the ionic strength (I) value of that benzoic acid is plotted against with dissociation constant (Kc) of acid into water at specific 298 K temperature. The values of acid dissociation constant for each concentration of NaCl is found to between of -3.788 to -4.169 as well.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

- 1. Berthelot M, Jungfleisch J. Am. Chim. et Phys. 1872;26:396.
- 2. Nernst WZ. Phys. Chem. 1891;8:110.
- Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced inorganic chemistry, 6th Edition, John Welly and Sons, Inc; 1999.
- 4. Treptow RS, Chem J. Educ. 1997;74(8):919-923.
- 5. Kettler RM, Wesolowski DJ, Palmer DA. J. Solution Chem. 1995;24(4):385-407.
- 6. Finar IL. Organic chemistry, Vol-1, 6th Edition, Dorling Kindersley (India) Pvt. Ltd; 2007.
- 7. Shiv P Mishra. Chemical Sci. Int. J. 2021;30(3):40-45.
- 8. Sergeeva VF. Russian chemical reviews. 1965;34:309-318.
- 9. Kilpatrick M, Eanes RD, Morse JG. J. Am. Chem. Soc. 1953;75:588-589.
- 10. Albert A, Serjeant EP. The determination of ionisation constants, 3rd Edition, Chapman and Hall, London; 1984.
- 11. Vogel A. Text book of quantitative chemical analysis, 5th Edition, Longman, Harlow; 1989.
- 12. Khouri SJ. American J. Analytical Chem. 2015;6:429-436.
- 13. Matsui T, Ko HC, Hepler LG. Can. J. Chem. 1974;52:2906-2911.
- 14. Bosch E, Bou P, Allemann H, Roses M. Analytical Chem. 1996;68:3651-3657.
- 15. Sarmini K, Kenndler E. J. Chromatography A. 1998;811:201-209.
- Cleveland JA, Benko MH Jr., Gluck SJ, Walbroehl YM. J. Chromatography A. 1993;652:301-308.
- 17. Huh Y, Lee JG, Mc Phail DC, Kim K. J. Solution Chem. 1993;22:651-661.

Mishra; IRJPAC, 22(6): 47-52, 2021; Article no.IRJPAC.72306

- Strong LE, Brummel CL, Ryther R, Radford JR, Pethyridge AD. J. Solution Chem. 1988;17:1145-1167.
- 19. Ellis AJ. J. Chem. Soc. 1963;2299-2310.
- 20. Read AJ. J. Solution Chem. 1981;10:437-450.
- 21. Steigman J, Sussman D. J. Am. Chem. Soc. 1967;89:6400-6406.
- 22. Atkins P, de Paula J. Physical chemistry, 9th edition, W. H. Freeman and Company, New Yark; 2010.
- 23. Solomons GT, Fryhle CB. Organic chemistry, 10th Edition, John Wiley & Sons, Hoboken; 2011.
- 24. Mesmer RE, Marshall WL, Palmer DA, Simonson JM, Holmes HF. J. Solution Chem. 1988;17:699-718.

© 2021 Mishra; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle4.com/review-history/72306