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ABSTRACT 
 
The bioaccumulation of heavy metals (Fe, Cu, Zn, Mn, Pb, Cd, Co, and Ni) were assessed in tissues 
(gills, liver, and muscles) of the thinlip mullet (Liza ramada) collected from three aquatic habitats 
varying in salinity in Egypt (freshwater, brackish, and offshore sites). In the freshwater site, metals 
accumulate in order of gills > liver > mussels with exception to Cu, Zn and Ni (liver > gills > 
mussels). In the brackish site, the order of metal accumulation for Fe, Cu, Zn, and Co were: liver > 
gills > mussels, and for Ni, Pb, and Mn were: gills > liver > mussels, while; Cd accumulated in order 
of mussels > gills > liver. In offshore site, Metals accumulates in order of: liver > gills > mussels 
except for Mn and Ni (gills > liver > mussels) and Cd (mussels > gills > liver).The overall metal 
concentrations for the three sites were ranked in the order of Fe > Mn > Zn > Cu > Pb > Cd > Co > 
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Ni. There were significant differences between sites for Cu and Co, and between fish organs for Pb, 
Cd, Co, and Ni. Strong positive correlations were found between Fe and Zn (P<0.001), Fe and Pb 
(P<0.001), Fe and Mn (r= P<0.001), Mn and Ni (P<0.001), and Cd and Ni (r= P<0.01). Significant 
positive correlations (p<0.05) were observed between Zn with Co and Fe with Ni. Target hazard 
quotient (THQ) values for Pb, Cd, Co, and Ni were higher than 1 for the three sites, which suggests 
that adverse health effects might arise from the consumption of these fish. The estimated daily 
intake (EDI) values for Ni and Cd were higher than the recommended levels, indicating health 
effects; however, the values for rest of the metals were lower than the recommended EDI levels, 
suggesting that they are unlikely to pose a health risk. 
 

 
Keywords: Target hazard quotient; risk assessment; estimated daily intake; aquatic; habitats; Egypt. 
 

1. INTRODUCTION 
 
Aquatic environments are vulnerable to pollution 
from urban development and in industrial waste 
[1]. Heavy metals from natural and 
anthropogenic sources pose particularly serious 
threats to both the environment and human 
health [2,3]. Heavy metals can be toxic to human 
health [e.g., As, Cd, Pb, Hg], whereas others are 
likely to be [e.g., Ni, V, Co)or are essential [e.g., 
Cu, Zn, Fe, Mn ] to human health [4,5]. However, 
even essential metals can also be toxic at high 
concentrations [6,7,8]. As heavy metals also 
have long persistence, toxicity to humans and 
other organisms, and bioaccumulation [9], heavy 
metals are recognised as one of the most 
important pollutant groups in the aquatic 
environment. 
 
Heavy metals are absorbed from water by 
suspended sediments and then precipitate to the 
surface sediment that provides food and habitats 
for fish and other aquatic organisms. This cycle 
promotes the bioaccumulation of heavy metals in 
aquatic organisms [1,10-14]. Heavy metals can 
negatively affect fish species, causing low fertility 
and mortality [7,15,16] 
 
Many fish that are caught for human 
consumption are located towards the end of the 
aquatic food chain and can accumulate metals 
from their environment; this can have an adverse 
effect on the health of consumers, causing 
chronic or acute disease [1,5,16-18].  
 
Fish provide humans with an important source of 
proteins, minerals, vitamins, and polyunsaturated 
fatty acids, especially omega-3 [16,19,20]. In 
Egypt, sources of fish for human consumption 
are marine-derived [11.70%] or are obtained 
from inland capture [23.75%] or aquaculture 
[64.55%] [21]. The main species produced in 
capture fisheries are mullet [16%], catfish 
[7.72%] and Sardinella [3.1%]. In aquaculture, 

tilapia production [38%] is the highest, followed 
by that of mullet [16%], grass carp [11.71%]             
and common carp [2.38%] [22]. Given the 
presence of heavy metals in fish destined for 
human consumption, it is important to determine 
and assess the levels of heavy metals in                 
such fish; this is also important because of the 
need to meet both nutritional and safety 
standards [1]. 
 
Risks to human health caused by toxic metals 
that accumulate in fish can be assessed using 
various methods [23]. Carcinogenic and non-
carcinogenic effects are represented by a 
comparison between exposure concentrations 
and thresholds for adverse effects [24]. The 
target hazard quotient [THQ] set by the US 
Environmental Protection Agency [25] is 
commonly used to evaluate potential non-
carcinogenic health risks resulting from the 
ingestion of various metals through fish 
consumption [3,9,13]. This risk estimation 
method is widely used, and its validity and 
usefulness in assessing the human health risk 
resulting from the ingestion of heavy metals 
through fish consumption have been validated 
elsewhere [1,26-28]. 

 
A significant part of the human diet in Egypt 
comprises fish, both farmed and wild. Thus, there 
is a need to understand the accumulation of 
heavy metals in species relevant to human 
consumption. The present study aims to explore 
the accumulation patterns of selected heavy 
metals [Fe, Mn, Zn, Cu, Pb, Cd, Co, and Ni] in 
three components [liver, gills, and muscles] of 
thinlip mullet [Liza ramada] collected from three 
different environments [freshwater, brackish, and 
offshore sites], to assess the public health risks 
associated with the consumption of the edible 
parts [muscles] of fish harvested from these 
areas, given the levels of heavy metals that they 
contain, and to determine the safe dietary intake 
of these metals. 
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2. METHODOLOGY 
 
2.1 Sampling and Analysis 
 
The fish selected for this study was the thinlip 
mullet (L. ramada). This species accounts for a 
significant percentage of the fish farmed for 
human consumption in Egypt. It is farmed using 
various approaches, such as (e.g. wild-caught, 
aquaculture etc.). Fish samples with an average 
weight of 250–500 gm were obtained; 33 
samples from the El-Serw freshwater farm 
(freshwater habitat), 12 samples from fisheries 
located in the northern section of Lake                  
Manzala (a brackish habitat), and 9 samples 
from a Mediterranean offshore area                         
(offshore habitat), (Fig. 1). All fish samples                  
were brought to the laboratory on the same day. 
The gills, liver and muscles from each fish                
were oven-dried at 90°C for 24 h and 
homogenised using a mortar and pestle.                   
The organs (0.2–0.5 mg dry weight)                        
were digested in a flask overnight using                
nitric acid (10 ml), and the resulting solution was 
then placed on a hot plate for 2 h at 90°C               
until it went clear. Upon cooling, the digest               
was filtered into a 10-ml volumetric flask and 
made to volume using distilled and deionised 
water [29]. The levels of Fe, Mn, Zn, Cu, Pb, Cd, 
Co, and Ni were determined using an atomic 
absorption spectrophotometer [AAS] model 
[Shimadzu AA-6800] and expressed as mg/kg

-1 

dry weight. 
 

2.2 Target Hazard Quotient 
 

THQ is defined as the ratio of the exposure level 
of a single metal over a specified period to a 
reference dose (RD) of the same metal for the 
same exposure period. The THQ approach 
assumes a level of exposure [i.e., RD] below 
which it is unlikely that even sensitive members 
of the population (pregnant, infants, those with 
compromised immune systems, etc) will 
experience adverse health effects [30,25]. If the 
exposure level (EF) exceeds this threshold, there 
is a human health risk associated with the 
consumption of the aquatic product (in this case 
L. ramada). The THQ is calculated using 
Equation 1: 
 

THQ  =
[ �� × �� ×��× ��� × ��

�
�

 

]

[�� × ��� × ��]
                          (1) 

 
EF, ED, FIR, MC, RD, ABW, and TA are defined 
in Table (1). If the THQ is >1, there is a risk to 
the health of the exposed population from 
consuming the product; if the THQ value is <1, 
there is no risk. In the current study, exposure to 
many pollutants (metals) was assessed; 
therefore, the total THQ or hazard risk (HI) was 
also calculated as the arithmetic sum of the 
individual metal THQ values, following the 
method of [26,27,31]. [Equation 2]: 
 

TTHQ [HI]  =
∑����

�
                                        (2) 

 

where n is the particular heavy metal tested 

 
 

Fig. 1. Sampling sites representing a brackish habitat (northern section of Lake Manzala), 
offshore habitat (Mediterranean offshore area), and a freshwater habitat (El-serw freshwater 

farm) 
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Table 1. Assumptions used to calculate the target hazard quotients [THQs] for each metal 
 

Assumption Description Value 
FIR Food ingestion rate for fish [g/person/day] 36

a
 

EF Exposure frequency [days/year] 365
b
 

ED Exposure duration equivalent to the average lifetime  
[ years] 

70
b
 

MC Metal concentration in fish [mg/kg. dw] Determined by this study 

ABW Average body weight [kg] 70 
TA Average exposure time for non-carcinogens 365 days/year × ED

b
 

a: According to FAO [32]. b: According to USEPA [25,30]. 
 

2.3 Estimation of Daily Intake 
 

The estimated daily intake (EDI) depends on 
metal concentration, level of consumption, and 
consumer’s body weight. To evaluate the metal 
risk associated with fish consumption, it was 
assumed that the level of the ingested dose was 
equal to the absorbed pollutant dose and that 
cooking had no effect on the level of pollutants 
[30]. The average adult body weight is 70 kg and 
the ingestion rate of fish is 36 g/person/day [32]. 
The EDI of Fe, Cu, Zn, Mn, Cd, Pb, Co, and Ni 
via consumption of the edible parts of the studied 
fish was calculated according to Equation 3: 
 

EDI [mg/kg –  bw/day]  =
��� × ��

��
                      (3) 

 

Where PIR is the consumer’s ingestion rate per 
day, MC is the concentration of the metal in the 
fish, and WB is the consumer’s body weight. 
 

2.4 Data Analysis 
 

Descriptive statistics, e.g., standard deviation, 
maximum, minimum, means are computed. 
Pearson’s correlation coefficient and two-way 
ANOVA were performed using software package 
SPSS version 22. 
 

3. RESULTS 
 

The levels of Fe, Cu, Zn, Mn, Pb, Cd, Co, and Ni 
were measured in different parts of L. ramada 
fish collected from fresh, brackish, and offshore 
sites. The mean concentrations of these metals 
are represented in Table (2) and Fig. 2 (a and b) 
for gills, (c and d) for liver, and muscles (e and f). 
Heavy metals concentration in various tissues of 
L. ramada is compared with some previous 
studies from other locations of the world (Table 
3). 
 

3.1 Iron [Fe] 
 

The mean concentrations of Fe in gills were 
ranked according to site as follows: brackish 
(790.78±162.58 mg/kg-1 dry weight (dw) > 

offshore (211.67±46.03mg/kg
-1

 dw) > freshwater 
(202.44±154.44 mg/kg-1 dw ). In liver, the mean 
concentrations were 722.95±365.09 mg/kg

-1
 dw, 

459.8±44.49 mg/kg-1 dw, and 39.19±64.08 
mg/kg

-1
 dw, for offshore, brackish, and 

freshwater sites, respectively. in muscles the 
highest mean concentrations were 69.17±24.15 
mg/kg

-1
 dw  in the offshore site followed by 

(65.53±10.62 mg/kg-1 dw) for the brackish site, 
and (6.37±13.99 mg/kg

-1  dw) for the freshwater 
site. 

 
3.2 Cupper (Cu) 
 
The levels of Cu in gills were sequenced as: 
freshwater (10.85±5.88 mg/kg-1 dw) > brackish 
(6.14±1.35 mg/kg

-1
 dw) > offshore (4.33±2.8 

mg/kg-1 dw). The levels in liver were 26.94±21.88 
mg/kg

-1
 dw, 20.21±7.65 mg/kg

-1
 dw, and 

5.68±5.21 mg/kg
-1

 dw for freshwater, brackish, 
and offshore sites, respectively. In muscles, the 
mean concentrations were the highest in the 
freshwater site (2.9±2.83 mg/kg-1 dw) followed           
by (2.13±1.02 mg/kg

-1
 dw), and (1.47±0.32 

mg/kg
-1

 dw) for, brackish and offshore sites, 
respectively. 
 

3.3 Zinc (Zn) 
 
Levels of Zn in gills were ranked as: freshwater 
(60.43±17.15 mg/kg

-1
 dw) > brackish (51.54±7.09 

mg/kg-1 dw) > offshore (51.18±3.51 mg/kg-1 dw). 
In liver, metal concentration arranged as: brackish 
(144.84±20.83 mg/kg-1 dw) > freshwater 
(72.3±28.11 mg/kg

-1
 dw) > offshore (63.68±21.01 

mg/kg
-1

 dw). The highest Zn concentration in 
muscles was measured in fish from the 
freshwater site (23.47±6.23 mg/kg

-1
 dw] followed 

by the offshore site (20.19±3.5 mg/kg-1 dw) and 
brackish site (16.62±3.02 mg/kg

-1
 dw). 

 
3.4 Manganese (Mn) 
 
The highest mean concentrations of Mn in gills 
(150.28±15.22 mg/kg

-1
 dw) and liver 
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(17.45±11.68 mg/kg-1 dw) were recorded in 
brackish site followed by the offshore site 
(140.17±35.59 mg/kg-1 dw in gills and 9.15±7.27 
mg/kg

-1
 dw in liver) and freshwater site 

(58.56±29.99 mg/kg-1 dw in gills and 8.06±                   
6.3 mg/kg

-1
 dw in liver). The maximum levels                  

in muscles were measured in fish obtained                 
from the offshore site (3.07±0.91 mg/kg-1 dw) 
followed by the brackish site (3.04±1.2 mg                
/kg-1 dw) and freshwater site (2.06±0.86 mg/kg-1 
dw). 
 

3.5 Lead (Pb) 
 

Lead concentrations in gills in the three sites were 
ranked as: freshwater (22.15±15.72 mg/kg-1 dw) 
> offshore (10.82±16.37 mg/kg

-1
 dw) > brackish 

(8.99±12.87 mg/kg-1 dw). The highest Pb levels 
in liver were recorded in fish from the offshore 
site (17.58±15.29 mg/kg

-1
 dw) followed by the 

brackish site (8.78±7.18 mg/kg-1 dw) and 
freshwater site (4.92±6.3 mg/kg

-1
 dw). However, 

in muscles, the highest Pb levels were measured 
in fish from the offshore site (9.39±10.06 mg/kg

-1
 

dw) followed by the freshwater site (4.97±6.17 
mg/kg-1 dw) and brackish site (4.55±6.19 mg/kg-1 
dw).  
 

3.6 Cadmium (Cd) 
 
Concentrations of Cd in fish from the offshore 
site were ranked as follow: muscles (0.82±             
1.23 mg/kg

-1
 dw) > gills (0.47±0.81 mg/kg

-1
 dw) > 

liver (0.27±0.25 mg/kg-1 dw). The highest                    
levels of Cd in the brackish site, were detected      
in muscles (0.05±0.1 mg/kg

-1
 dw) followed                   

by liver (0.04±0.05 mg/kg-1 dw) and gills 
(0.03±0.05 mg/kg

-1
 dw). Cd was not detected                

in any part of fish collected from the freshwater 
site.  
 

3.7 Cobalt (Co) 
 
While the levels of Co measured in fish gills were 
1.88±2.04 mg/kg-1 dw, 1.71±0.71 mg/kg-1 dw, 
and 0.29±0.97 mg/kg-1 dw for brackish, offshore, 
and freshwater sites, respectively. The levels in 
liver were 22.56±43.24 mg/kg-1 dw and 0.29±0.37 
mg/kg

-1
 dw for offshore and brackish sites, 

respectively. However, this metal was not 
detected in the fish liver and muscles obtained 
from the freshwater site.  

 
3.8 Nickel (Ni) 
 
Nikel levels in gills were ranked as: offshore 
(1.9±2.19 mg/kg-1  dw) > brackish (1.6±2.91 

mg/kg-1 dw) > freshwater (1.09±2.46 mg/kg-1 dw), 
and for liver as: offshore (1.8±1.64 mg/kg

-1
 dw) > 

freshwater (1.14±2.93 mg/kg-1 dw) > brackish 
(0.6±1.2 mg/kg

-1
  dw). The mean concentration   

of Ni in the fish muscles obtained from                          
the offshore site was (1.64±1.17 mg/kg

-1
                   

dw) however, it was not detected in the other 
sites.  
 
Significant differences were detected between 
sites for Cu and Co, and between fish organs for 
Pb, Cd, Co, and Ni. exerts strong positive 
correlations between Fe and Zn (P<0.001), Fe 
and Pb (P<0.001), Fe and Mn (P<0.001), Mn and 
Ni (P<0.001), and Cd and Ni (r= P<0.01. 
Significant positive correlations (p<0.05) were 
also observed between Zn and Co and between 
Fe and Ni. 
 

3.9 Risk Analysis 
 
The estimated THQ of each metal is presented in 
Table (4). The THQ values for Fe, Cu, Zn, and 
Mn were less than 1, the highest mean THQ 
values were observed for Pb, Cd, Co, and Ni 
across the three habitats (Fig. 3), The EDIs of the 
measured metals were calculated for each site 
and are listed in Table (5). The highest EDI 
values were observed for Fe and Zn. The EDI 
values in this study (Fig. 4) significant differences 
were detected between sites for Cu and Co, and 
between fish organs for Pb, Cd, Co, and Ni 
(Table 6). Table (7) exerts strong positive 
correlations between Fe and Zn (P<0.001), Fe 
and Pb (P<0.001), Fe and Mn (P<0.001), Mn and 
Ni (P<0.001), and Cd and Ni (r= P<0.01. 
Significant positive correlations (p<0.05) were 
also observed between Zn and Co and between 
Fe and Ni. 
 
4. DISCUSSION 
 
The measured metals in L. ramada fish obtained 
from the freshwater site were accumulated 
higher in gills followed by liver and muscles with 
exception to [Cu, Zn and Ni] which accumulated 
higher in liver followed by gills and muscles. In 
fish from the brackish site, Cu, Zn, and Co were 
accumulated much higher in liver than gills and 
muscles while; Fe, Ni, Pb, and Mn were 
accumulated much higher in gills than liver and 
muscles. However, the measured metals in the 
offshore site were accumulated as [liver > gills > 
muscles] with exception to Mn and Ni [gills > liver 
> muscles]. Cd in the two sites [brackish and 
offshore] was accumulated higher in muscles 
followed by gills and liver.  
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Table 2. Accumulation of selected heavy metals in gills, liver and muscle of L. ramada fish (mg/kg
-1

 dry weight) 
 

Sites Fish parts Heavy metals 
Fe Cu Zn Mn Pb Cd Co Ni 

fresh gill 202.44±154.4 10.85±5.88 60.43±17.15 58.56±29.99 22.15±15.72 ND 0.29±0.97 1.09±2.46 
liver 39.19±64.08 26.94±21.88 72.3±28.11 8.06±6.3 4.92±6.3 ND ND 1.14±2.93 
muscles 6.37±13.99 2.9±2.83 23.47±6.23 2.06±0.86 4.97±6.17 ND ND ND 

brackish gill 790.78±162.6 6.14±1.35 51.54±7.09 150.28±15.22 8.99±12.87 0.03±0.05 1.71±0.71 1.6±2.91 
liver 459.8±44.49 20.21±7.65 144.84±20.83 17.45±11.68 8.78±7.18 0.04±0.05 22.56±43.24 0.6±1.2 
muscles 65.53±10.62 1.47±0.32 16.62±3.02 3.04±1.2 4.55±6.19 0.05±0.1 0.29±0.37 ND 

offshore gill 211.67±46.03 4.33±2.8 51.18±3.51 140.17±35.59 10.82±16.37 0.47±0.81 1.88±2.04 1.9±2.19 
liver 722.95±365.1 5.68±5.21 63.68±21.01 9.15±7.27 17.58±15.29 0.27±0.25 2.4±2.53 1.8±1.64 
muscles 69.17±24.15 2.13±1.02 20.19±3.5 3.07±0.91 9.39±10.06 0.82±1.23 1.11±0.96 1.64±1.17 

ND= Not Detected 

 
Table 3. Concentrations of the selected metals from the literature, (mg/kg dry weight) 

 
Sites Sp. Fish parts Heavy metals 

Fe Cu Zn Mn Pb Cd Co Ni 
Hara biosphere of southern Iran  
(mg kg

-1
 ww) 

[40] 

Liza klunzingeri 
 

gill - - - - 0.44±0.08 0.32±0.06 - 1.78±0.09 
liver - - - - 0.67±0.11 0.63±0.07 - 2.06±0.11 
muscles - - - - 0.32±0.04 0.16±0.06a - 1.52±0.1 

coastal lagoon 
Fernandesa 2007 
[63] 

Liza saliens gill - - 114.4 - - - - - 
liver - 254 - - - - - - 
muscles - 2.64 - - - - - - 

Ennore estuary 
[1]. 

M. cephalus gill 15.14 ± 1.26  5.598 ± 0.74  8.058 ± 0.96  9.648 ± 0.96  5.253 ± 0.59  2.856 ± 0.25  - - 
liver 14.665 ± 1.301 6.068 ±0.94 7.467 ± 0.895 9.789 ± 0.979 4.334 ± 0.495 3.146 ± 0.398 - - 
muscles 10.278 ± 1 3.346 ± 0.56 1, 4.132 ± 0.46 1, 5.208 ± 0.68 1.15 ± 0.23 1, 0. 953 ± 0.12 - - 

southern part of Caspian Sea 
Jelodar 2011 
[64] 

Liza aurata gill 371.52±222.44 5.53±1.01 60.14±26.60 - 3.61±0.70 0.90±0.59 - 1.43±0.36 
liver 415.35±223.97 160.39±40.01 78.97±29.93 - 2.60±0.76 1.07±0.68 - 1.01±0.38 
muscles 67.52±33.53 4.54±1.07 13.69±7.23 - 1.50±0.53 0.35±0.23 - 0.73±0.32 

Estuaries 
Safahieh 2011 
[65] 

Liza klunzingeri 
 

gill - 4.33 - 6.03 - - 2.64 - 21.41 0.32 - 2.72 0.29 - 1.10 4.61 - 17.52 
liver - 5.05 - 36.22 - - 0.66 - 5.74 0.44 - 2.03 0.5 - 2.80 0.48 - 4.91 
muscles - 0.89 - 4.28 - - 0.5 - 2.50 0.08-0.44 ND-1.63 0.48 - 2.73 

Tuzla lagoon 13 7 
[66,67]. 

Mugil cephalus gill - 3.43 - - 4.54 1.27 - - 
liver - 4.77 - - 2.12 0.21 - - 

Rosario 41 [68] Liza ramada muscles - 1.6 - - 3.7 0.9 - - 
Ataturk Dam Lake 7[67] Liza abu gill - 6.27 - - - - ND ND 

liver - 267.45 - - - - ND ND 
muscles - 1.36 - - - - ND ND 
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Fig. 2. Concentration of  (Fe, Cu, Zn, Mn, Pb Cd, Co, and Ni (mg/kg-
1
dw) measured in L. ramada fish collected from freshwater, brackish, and offshore sites. (a) & (b) levels in  gills,  

(c) & (d) levels in  liver and  (e) & (f)  levels in  muscles 
 

 
 

Fig. 3. Target hazard quotients [THQs] for the heavy metals measured in fish from each site compared with the standard for non-carcinogenic risks  
[Indicated by the horizontal green line] 
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Table 4. The estimated target hazard quotients (THQs) for the heavy metals measured in fish 
from each study site compared with the oral reference dose 

 
Heavy metal THQ in study sites Oral reference dose 

[RD/mg/kg
-1

/day]
a
 Freshwater Brackish Offshore 

Fe 0.005 0.048 0.051 7 × 10
-1

= 0.7 
Cu 0.037 0.019 0.027 4 × 10

-2
 = 0.04 

Zn 0.040 0.028 0.035 3 × 10
-1

 = 0.3 
Mn 0.008 0.011 0.011 1.4 × 10

-1
 = 0.14 

Pb 0.639 0.585 1.208 4 × 10-3 = 0.004 
Cd ND 0.026 0.422 1 × 10

-3
 = 0.001 

Co ND 0.489 1.909 3 × 10
-4

 =0.0003 
Ni ND ND 0.042 2 × 10

-2
 = 0.02

a
 

TTHQ [HI] 0.73 1.21 3.70  
a According to [25,32,39].   ND=not detected. 

 
Table 5. The estimated daily intake [EDI] of the heavy metals measured in fish from each study 

site 
 

Heavy 
metal 

EDI EWI [EDI*7 days] 
Freshwater brackish offshore recommended EDI 

[mg/person/day] 
Freshwater brackish offshore 

Fe 3.276 33.7 35.57 45
e

 22.93 235.91 249.01 

Cu 1.49 0.76 1.09 30d 10.43 5.29 7.66 

Zn 12.072 8.55 10.38 60
d

 84.5 59.83 72.67 

Mn 1.057 1.56 1.58 10
c
 7.4 10.93 11.04 

Pb 2.6 2.34 4.83 0.21
a

 17.9 16.38 33.82 

Cd ND 0.03 0.42 0.06
a

 ND 0.18 2.95 

Co ND 0.1 0.57 30b ND 1.03 4.01 

Ni ND ND 0.84 0.3
b
 ND ND 5.9 

aPTDI: provisional tolerable daily intake [60 kg body weight] [54,55]. 
bAverage daily intake from food [57,58]. 

cESADDI: estimated safe and adequate daily dietary intake [59]. 
dPMTDI: provisional maximum tolerable daily intake [70 kg body weight] [38,53]. 

eTULs: tolerable upper intake levels for Fe [>19 years], established by the Food and Nutrition Board [56]. 

 

 
 

Fig. 4. The estimated daily intake [EDI] of the heavy metals measured in fish from each study 
site compared with the recommended dietary allowance [RDA] 
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Table 6. Analysis of variance results of the heavy metals measured in fish from the study sites 
 

Metal  Site Organ Site * Organ 
df F value Sig. df F value Sig. df F value Sig. 

Fe 2 45.78 0.000 2 31.17 0.000 4 19.73 0.000 
Cu 2 2.67 0.08 2 15.53 0.000 4 1.2 0.32 
Zn 2 40.61 0.000 2 34.46 0.000 4 12.65 0.000 
Mn 2 157.04 0.000 2 211.97 0.000 4 115.74 0.000 
Pb 2 9.05 0.000 2 0.88 0.42 4 0.69 0.60 
Cd 2 9.67 0.000 2 0.42 0.66 4 0.96 0.44 
Co 2 2.35 0.11 2 1.17 0.32 4 1.9 0.13 
Ni 2 8.43 0.000 2 0.89 0.42 4 0.75 0.56 

 

Table 7. Pearson correlations between different heavy metals measured in fish from the study 
sites 

 

Fe  Cu Zn Mn Pb Cd Co Ni 
Fe 1        
Cu -0.022 1       
Zn 0.537** 0.205 1      
Mn 0.558** -0.123 0.247 1     
Pb 0.414** -0.184 0.264 0.199 1    
Cd 0.085 -0.118 0.053 0.176 0.255 1   
Co 0.204 0.174 0.346* 0.036 0.072 0.015 1  
Ni 0.345* -0.108 0.192 0.455** 0.138 0.540** -0.005 1 

*=is significant at P<0.05 level [2-tailed]. **=is significant at the P<0.01 level [2-tailed]. 

 
Generally, the highest heavy metals 
accumulation in the studied fish L. ramada 
occurred in the liver and gills followed by muscles 
with exception to cadmium. Gills are in direct 
contact with the environment and represent the 
main target for metal uptake; thus, metal 
adsorption at the gill surface could have an 
important influence on total metal levels in fish. 
By contrast, the concentrations of heavy metals 
in the liver reflect the role of this organ in the 
long-term storage and detoxification of pollutants 
[1,33]. Therefore, gills and liver are often 
recommended as an index of environmental 
pollution than other fish organs. This may be due 
to the tendency of the liver and gills to 
accumulate pollutants at different levels of their 
environment [34,35]. As, muscles are covered by 
skin, which prevents the direct absorption of 
pollutants from the environment [36]. Given that 
the muscles are generally the part of the fish 
consumed by humans, any toxins in this tissue 
could affect the health of humans who consume 
these fish. The present results are consistent 
with the date recorded by Karadede and Unlu 
[36], which indicated elevated levels of heavy 
metals in liver and gills in many types of fish in 
Tigris River and Ataturk Dam Lake. Also, 
Vasanthi et al. [1] found that the fish M. cephalus 
collected from Ennore estuary contained very 
high concentrations of heavy elements, 
especially in gills and liver. However, [37] 
reported that the two species (Mugil cephalus 
and Liza ramada) collected from five locations in 

Lake  Manzala, contained the highest 
concentrations of heavy metals in gills tissue of 
both fish species, while the lowest concentrations 
were recorded in muscles tissue.  
 
Very high concentrations of Fe in liver and gills 
were recorded in the three sites, these results 
were much higher than that reported by Vasanthi 
et al. [1], he assumed that the very high Fe level 
could be attributed to haemoglobin found in 
highly vascularized liver tissues of M. cephalus. 
Fe levels in the fish muscles from the freshwater 
site were similar to the result obtained by Omar 
et al. [38] in M. cephalus collected from Lake 
Qaroun, and Qaroun fish farms, while the 
brackish and offshore sites were much higher. 
Cu values measured in the fish muscles in this 
study were similar to the result obtained by 
Vasanthi et al. [1], and below the result obtained 
by Bahnasawy et al. and Omar et al. [37,38]. It 
also was below the acceptable limits cited by 
many organisations, e.g., 30 ppm [39,40]; 20 
µg/g wet weight [UK Food Standards Committee 
Report] [41], and 10 µg/g wet weight [Australian 
Food Standard Code] [3]. Cu, an essential 
element present in many enzymes, has an 
important role in haemoglobin formation [3,42]. 
Similar to other metals, high levels of Cu can 
cause toxic effects in consumers. 
 
Although Zn is an essential element, excessive 
intake can lead to deficiencies in Fe and Cu, as 
well as nausea, vomiting, fever, headache, 
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tiredness, and abdominal pain. It is also a human 
skin irritant [3]. Zn levels were similar to data 
obtained by Bahnasawy et al. and Omar et al.  
[37,38], and much higher compared with the 
result obtained by Vasanthi et al. [1], and below 
the permissible limit for Zn is 40 ppm [39,40,43]. 
Mn values measured in the fish in this study were 
similar to the result obtained by Vasanthi et al.  
[1] and higher than that recorded by Omar et al. 
[38]. The obtained results of Mn were higher than 
the permissible limits for Mn range from 0.5 
mg/kg

-1
 [44,45] to 1.0 mg/kg

-1
 [43,46]. Mn 

deficiency may cause sexual abnormalities in 
mammals [47]. Pb levels in fish from all sites 
were much higher than the data recorded by 
Several authors [37,38,40], and the 
recommended maximum limits, i.e., 0.5 mg/kg

-1
  

[43] and  2.0 mg/kg-1  [44,48]. Pb in fish muscles 
should not exceed 9.6 µg/g dw according to the 
UK Food Standards Committee Report [10]. 
 

Cd accumulation in the human body can cause 
toxic effects at very low concentrations, including 
hepatic and reproductive effects and even cancer 
[3,47]. In this study, levels of Cd in fish muscles 
from the offshore site were below the obtained 
data by Bahnasawy et al. [37] in Liza ramada, 
and similar to the recorded data by Vasanthi et 
al.  [1]. However, it was higher than the data 
recorded by Mohammadnabizadeh et al. [40] 
who worked on Liza klunzingeri and Sillago 
sihama caught from the Hara biosphere of 
Southern Iran, and exceed the permissible limit 
[0.5 mg/kg

-1
] for fish as food according to Several 

authors [20,43,48]. Cd measured in muscles of 
fish from all sites was below specified limits, i.e., 
2.0 mg/kg

-1
  [44,45], 0.1 mg/kg

-1
 [39,40], and 1.0 

µg/g-1 [49]. There are no permissible limits cited 
for cobalt in fish. Ni is present in aquatic 
environments at a very low concentration but can 
lead to noxious effects, such as pneumonia, 
cirrhosis, and emphysema [3,50].  Ni values in 
this study were similar to the result obtained by 
Mohammadnabizadeh et al. [40], and below the 
threshold limit reported by Western Australian 
Food and Drug Regulations [51] (5.5 µg/g on a 
wet weight basis, which equals 26.4 µg/g on a 
dry weight basis assuming a 79% moisture 
content of fish muscles). 
 

The estimated THQ values for Fe, Cu, Zn, and 
Mn were less than 1, indicating that there would 
be no adverse health effects associated with the 
consumption of L. ramada from any of the three 
habitats regarding these metals. The highest 
mean THQ values were observed for Pb, Cd, Co, 
and Ni across the three habitats, which suggests 
that consumer might experience some adverse 

health effects of these four metals by consuming 
these fish. The THQ averages were ranked as 
Co> Pb> Cd> Ni > Zn > Cu > Fe > Mn. The 
cumulative health risk [TTHQ] or HI was 
calculated by summing the THQs of the eight 
metals to assess the exposure to a mixture of 
metals of humans consuming L. ramada from 
each habitat. TTHQ was less than 1; a value of 
0.73 was obtained for the freshwater site, 
suggesting that L. ramada harvested from this 
site could be safely consumed for life. However, 
L. ramada harvested from the brackish and 
offshore habitats was found to be a high health 
risk for consumers, with total THQ values of 1.21, 
and 3.70, respectively. 
 

An important aspect of assessing the risk to 
human health resulting from potentially harmful 
metals in fish is knowledge of the dietary intake 
of such substances, which must remain within 
determined safety standards [52]. The highest 
EDI values were observed for Fe and Zn. The 
EDI values in this study were compared with the 
recommended dietary allowance [RDA] of 
individual metals set by many organizations, 
including the FAO/WHO Expert Committee on 
Food Additive [JECFA] for Cd, Cu, Pb, and Zn 
[53-55]; the Food and Nutrition Board FNB for Fe 
[56]; the World Health Organization for Co and Ni 
[57,58]; and the National Research Council  
[NRC] for Mn [59]. The EDI values for Ni and Cd 
were higher than the recommended levels, 
indicating health effects; however, the values for 
the remaining metals were lower than the 
recommended levels, suggesting that a health 
risk associated with exposure to the examined 
metals would be unlikely. 
 

Two-way ANOVA was performed to determine 
any significant differences in heavy metal 
concentrations among the tissues and study 
sites. A probability level of 0.05 was considered 
statistically significant. Correlation-based 
analyses can provide an indication of the 
potential relationships between metals, such as 
common sources, related dependence, and 
similar behaviours [8,60,61,62,63,64]. Strong 
positive correlations were found at the p<0.01 
level, and Significant positive correlations were 
found at the p<0.05. The strong correlation 
between the studied heavy metals indicates a 
similar level of contamination or release from the 
same pollution sources [2]. Fish muscles (edible 
part) comprise a considerable amount of different 
heavy metals that can lead to deleterious health 
effects on humans, the accumulated effects of 
these metals indicates that the health of 
consumers who rely on fish around the 
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contaminated studied sites are at risk. However, 
the variations in the modality of metals 
accumulation among fish species may be due to 
differences in feeding habits and lifestyle in the 
studied sites [38,65,66,67,68]. 
 

5. CONCLUSIONS 
 

Metals accumulation in the gills and liver were 
higher than that in muscle. A high correlation 
between specific heavy metals indicates a similar 
level of contamination or release from the same 
pollution sources. Adverse health effects 
associated with the consumption of fish 
contaminated with Pb, Cd, Co, and Ni, on the 
contrary, the consumption of fish contaminated 
with Fe, Cu, Zn, and Mn had no adverse effects. 
The estimated daily intake [EDIs] of the 
measured metals were lower than the 
recommended dietary allowance [RDA] of 
individual metals set by many organisations, 
except Ni and Cd. The consumption limits of the 
eight metals presented in this study provide 
important information that could be used to 
reduce potential health risks resulting from 
human consumption of L. ramada in the study 
region. 
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