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Abstract

Recent observational and theoretical studies indicate that the damping of solar coronal loop oscillations depends on
the oscillation amplitude. We consider two mechanisms: linear resonant absorption and a nonlinear damping
model. We confront theoretical predictions from these models with observed data in the plane of observables
defined by the damping ratio and the oscillation amplitude. The structure of the Bayesian evidence in this plane
displays a clear separation between the regions where each model is more plausible relative to the other. There is
qualitative agreement between the regions of high marginal likelihood and Bayes factor for the nonlinear damping
model and the arrangement of observed data. A quantitative application to 101 loop oscillation cases observed with
Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) results in the marginal likelihood for
the nonlinear model being larger in the majority of them. The cases with conclusive evidence for the nonlinear
damping model outnumber considerably those in favor of linear resonant absorption.

Unified Astronomy Thesaurus concepts:Magnetohydrodynamics (1964); Solar coronal loops (1485); Solar coronal
seismology (1994); Bayesian statistics (1900); Bayes factor (1919)

1. Motivation

Damped transverse oscillations of solar coronal loops have
been the subject of intense observational and theoretical
research in the past two decades since their discovery using
the Transition Region and Coronal Explorer by Aschwanden
et al. (1999) and Nakariakov et al. (1999). Further observations
with instrumentation on-board the Solar Dynamics Observatory
(SDO) and the Solar TErrestrial RElations Observatory
produced an increase in the amount and quality of the data.
This has led to the creation of catalogs containing oscillation
properties for a large number of events (Goddard et al. 2016;
Nechaeva et al. 2019). The analysis of these events shows an
empirical relationship between the measured damping ratio and
the oscillation amplitude (Goddard & Nakariakov 2016).

The observed damping has been widely attributed to the
mechanism of resonant absorption (Goossens et al. 2002;
Ruderman & Roberts 2002). The numerical experiments by
Magyar & Van Doorsselaere (2016) show that for small
oscillation amplitudes linear resonant absorption provides a
good approximation to the damping properties. For larger
amplitudes the nonlinear evolution results in a significantly
faster damping than predicted by linear theory. Recent
analytical developments by Van Doorsselaere et al. (2021),
using a mathematical description in terms of Elsässer variables,
show that the nonlinear damping time of impulsively excited
standing kink modes in coronal loops is inversely proportional
to the oscillation amplitude.

Assessing the damping mechanism(s) operating in coronal
loop oscillations is crucial to advance in coronal seismology
and wave heating investigations. In this study, we confront the
theoretical predictions from linear resonant damping and from
the nonlinear damping model by Van Doorsselaere et al. (2021)
with observed loop oscillation properties in the catalog
compiled by Nechaeva et al. (2019). The aim is to quantify
the evidence for the nonlinear damping model relative to the
evidence for resonant absorption in explaining the damping of
coronal loop oscillations.

2. Damping Models

The damping of coronal loop oscillations has been widely
interpreted in terms of resonant absorption (RA) of standing
kink waves in radially inhomogeneous flux tube models (see,
e.g., Goossens et al. 2006, 2011). The mechanism is based on
the transfer of wave energy from large to small spatial scales in
the radial direction. Under the thin tube and thin boundary
approximations, the ratio of the damping time τd to the
oscillation period P is given by the analytical expression
(Ruderman & Roberts 2002; Goossens et al. 2002)
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with ζ= ρi/ρe the ratio of internal to external density, l/R the
length of the non-uniform layer at the boundary of the waveguide
with radius R, and p= 2 for a sinusoidal variation of density
over the non-uniform layer. The predictions from the damping
model MRA given by Equation (1) for the observable damping
ratio are determined by the parameter vector θRA= {ζ, l/R}.
A recent analytical investigation by Van Doorsselaere et al.

(2021) has shown that the nonlinear (NL) damping time of
standing kink waves is inversely proportional to the oscillation
amplitude. The nonlinear evolution of the dynamics produces
an energy transfer to small scales in the radial and azimuthal
directions. Using a formalism based on the use of Elsässer
variables, Van Doorsselaere et al. (2021) derive an analytical
expression for the damping ratio in the inertial regime of the
turbulent cascade given by
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with a= η/R the ratio of the displacement η to the loop radius.
The predictions from the damping model MNL given by
Equation (2) for the observable damping ratio, for known
oscillation amplitude, are determined by the parameter vector
θNL= {R, ζ}.

The Astrophysical Journal Letters, 915:L25 (8pp), 2021 July 1 https://doi.org/10.3847/2041-8213/ac0d53
© 2021. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-7008-7661
https://orcid.org/0000-0002-7008-7661
https://orcid.org/0000-0002-7008-7661
mailto:iarregui@iac.es
http://astrothesaurus.org/uat/1964
http://astrothesaurus.org/uat/1485
http://astrothesaurus.org/uat/1994
http://astrothesaurus.org/uat/1994
http://astrothesaurus.org/uat/1900
http://astrothesaurus.org/uat/1919
https://doi.org/10.3847/2041-8213/ac0d53
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/ac0d53&domain=pdf&date_stamp=2021-07-06
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/ac0d53&domain=pdf&date_stamp=2021-07-06


3. Analysis and Results

Our judgment on the evidence in favor of any of the two
models with respect to the other in explaining a set of observations
is based on the use of Bayesian reasoning (see, e.g., Jaynes 2003;
Gregory 2005; Lindley 2014). The philosophy and methodology
of this approach and early applications to solar coronal seismology
are discussed in Arregui (2018).

As first noticed by Goddard & Nakariakov (2016), when the
damping ratio for a large number of loop oscillation events is
plotted against their oscillation amplitude, the data are scattered
forming a cloud with a triangular shape. Larger amplitudes
correspond in general to smaller damping ratio values and
vice versa (see Figure 2 in Goddard & Nakariakov 2016 or
Figure 6 (bottom right) in Nechaeva et al. 2019). In our
analysis, we quantify the relative ability of the two considered
damping models to explain the distribution of the data in the
plane of observables defined by the damping ratio and the
oscillation amplitude.

In the first part of the analysis, we calculate the marginal
probability of the data for each model and compute their ratio, the
Bayes factor, over a two-dimensional synthetic data space. This
gives a bird’s eye view of the general structure of the evidence. In
the second part of the analysis, Bayes factors are computed for the
101 loop oscillation events in the catalog by Nechaeva et al.
(2019) with information about the oscillation amplitude.

3.1. Structure of the Evidence

Given a model M with parameter vector θ proposed to
explain observed data D, a relational measure of the quality
of the model derives from the integral of the joint distribution
p(θ, D|M) over the full parameter space
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This is the so-called marginal likelihood. In this expression,
p(θ|M) is a prior distribution over the parameter space and
p(D|θ, M) is the likelihood of obtaining a specific data
realization as a function of the parameter vector. This measure
of evidence is relational because a relation is examined to
quantify how well the data D are predicted by the model M.

To apply Equation (3) to the damping models MNL and MRA a
two-dimensional grid over synthetic data space h t= P, d( ) is
constructed. The grid covers the ranges in oscillation amplitude
and damping ratio in the observational and theoretical studies by
Nechaeva et al. (2019) and Van Doorsselaere et al. (2021).
Possible data realizations over the grid are generated using the
theoretical predictions given by Equations (1) and (2) for models
MRA and MNL, respectively. Under the assumption of a Gaussian
likelihood function and adopting an error model for the damping
ratio alone

q

= -
q

ps s

-t t

p M,

exp , 4

RA,NL

1

2 2

d
P

d
P MRA,NL

2

2

⎧
⎨⎩

⎫
⎬⎭

⎡⎣ ⎤⎦

( ∣ )

( )
( ) 

with σ the uncertainty in damping ratio. As for the priors,
we choose uniform priors for the unknown parameters over

ranges similar to those in Van Doorsselaere et al. (2021),
additionally considering the statistical and seismological results by
Aschwanden & Peter (2017); Goddard et al. (2017); Pascoe et al.
(2018):  R Mm , 0.5, 7( [ ] ), z , 1.1, 6( ), and  l R, 0.1, 2( ).
Figure 1 shows the resulting marginal likelihoods for the two

damping models over the grid of synthetic data in damping
ratio and oscillation amplitude. The magnitude of the marginal
likelihood at each point over the surface is a measure of how
well a particular combination of damping ratio and oscillation
amplitude is predicted by each model. This magnitude depends
on the functional form of the damping models on their
parameters and is not necessarily connected with their linear/
nonlinear nature. Certain damping ratio and oscillation
amplitude combinations are predicted more often than others.
The predictions from each model clearly differ.
For nonlinear damping (Figure 1, left panel), the significant

magnitudes of marginal likelihood are distributed over the
triangular region with right angle in the lower-left corner of the
domain. The filled contour plot shows a convex structure with a
triangular shape. The area with the highest marginal likelihood
corresponds to strong damping regimes with oscillation
amplitudes in the range ∼[5, 20]Mm. The obtained marginal
likelihood distribution offers a straightforward explanation of
the spreading of samples of pairs of oscillation amplitudes
and damping ratios in the Monte Carlo analysis by Van
Doorsselaere et al. (2021). In addition, it quantifies their
relative plausibility. For linear resonant absorption (Figure 1,
right panel), the region with the highest marginal likelihood
corresponds to low damping ratio values, independently of the
oscillation amplitude. The predictive accuracy of the model
decreases for weaker damping.
The marginal likelihood values are influenced by the quality

of the data, the accuracy of the models and the prior
assumptions. The damping times predicted by the nonlinear
model MNL show certain differences with the numerical results
of Magyar & Van Doorsselaere (2016). The resonant damping
model MRA describes the long-term asymptotic state of long
wavelength oscillations in tubes with thin boundaries. It
overestimates the damping for thick layers (Van Doorsselaere
et al. 2004; Soler et al. 2014). Linear MHD simulations by
Pascoe et al. (2019) show that MRA significantly overestimates
the damping that would occur in the first few cycles of an
oscillation when l/R is not small, resulting in a model with an
over-preference for low damping ratio values. This means that
MRA has the largest marginal likelihood precisely in the strong
damping regime in which it provides the least accurate
description of the oscillations, which inevitably overempha-
sizes the weakness ofMRA and hence the strength ofMNL. Lack
of knowledge about the radial density profile (Pascoe et al.
2017b; Arregui & Goossens 2019) is an additional source of
inaccuracy. Our prior sensitivity analysis showed that further
increasing the upper limit for density contrast to ζ= 9.5
increases the magnitude of p NNL( ∣ ) and the marginal
likelihood surface in Figure 1 (left panel) extends toward
combinations with slightly larger amplitude and low damping
ratio values. Because larger loop radii correspond to a lower
nonlinearity parameter η/R, increasing the upper limit for R
enables a greater range of τd/P to be consistent with a
particular observed amplitude.
Overall, there is qualitative agreement between the regions

with high marginal likelihood for the nonlinear damping model
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and the broad location of observed data (compare Figure 1 (left
panel) with Figure 6 in Nechaeva et al. 2019). This is
suggestive of relational evidence between the observations and
the nonlinear damping model.

The marginal likelihood only quantifies the evidence for a
model in relation to the data that it predicts. In the general
model comparison problem the aim is to assess the relative
evidence between alternative models in explaining the same
observed data. This is achieved with the calculation of the
posterior ratio  p M p MNL RA( ∣ ) ( ∣ ). If the two models are
equally probable a priori, p(MNL)= p(MRA) and by application
of Bayes rule the posterior ratio reduces to the ratio of marginal
likelihoods of the two models

= = -



B
p M

p M
B2 log , 5NLRA

NL

RA
RANL

( ∣ )
( ∣ )

( )

where the logarithmic scale is used for convenience in the
evidence assessment.

The Bayes factors BNLRA and BRANL defined in Equation (5)
are a measure of relative evidence. They quantify the relative
plausibility of each of the two models to explain the same data.
To assess the levels of evidence the empirical table by Kass &
Raftery (1995) is employed. For instance, the evidence in favor
of model MNL in front of model MRA is inconclusive for values
of BNLRA from 0 to 2; positive for values from 2 to 6; strong for
values from 6 to 10; and very strong for values above 10. A
similar tabulation applies to BRANL.

Figure 2 shows the resulting Bayes factor distributions over the
-space. By construction, regions in this space where BNLRA and
BRANL reach the different levels of evidence are mutually
exclusive and cannot overlap. There is a clear separation between
the regions where > p M p MNL RA( ∣ ) ( ∣ ), thus BNLRA> 0, from
those where > p M p MRA NL( ∣ ) ( ∣ ), hence BRANL> 0.

Figure 2 (left panel) shows that the evidence supports
nonlinear damping in a particular region of data space. The

region contains combinations with small oscillation amplitudes
in a narrow band below ∼5Mm and large damping ratio and
extends toward combinations with smaller damping ratio and
larger oscillation amplitudes in the broader range ∼[2, 23]Mm.
Because p MRA( ∣ ) is independent of oscillation amplitude,
there is a conformity between the regions with high Bayes
factor BNLRA and marginal likelihood p MNL( ∣ ), although
their structures differ. Figure 2 (right panel) shows that the
evidence supports resonant absorption in two regions. The
largest one extends toward the right-hand side of the domain.
Here, the large Bayes factor values in favor of resonant
damping are due to the corresponding low values of p MNL( ∣ )
relative to p MRA( ∣ ) (see Figure 1). Because the Bayes factor
represents relative strengths, one model being poor at a
particular region in data space makes the alternative model
seem better in comparison. The evidence in favor of resonant
damping is very strong in the region restricted to combinations
of very small amplitude oscillations with strong damping, close
to the lower-left corner in data space.
Overall, there is qualitative agreement between the regions

with high Bayes factor for the nonlinear damping model and
the broad location of observed data (compare Figure 2 (left
panel) with Figure 6 in Nechaeva et al. 2019). This is
suggestive of evidence in favor of the nonlinear damping
model relative to linear resonant absorption.

3.2. Application to Observations

The catalog by Nechaeva et al. (2019) contains information
about 223 oscillating loops observed by SDO/Atmospheric
Imaging Assembly (AIA) at the 171Å extreme ultraviolet
channel in the period 2010–2018 (see their Table 1). It is an
extension of the catalog by Goddard et al. (2016). A subset of
101 cases contains information about both the damping ratio
and the oscillation amplitude. The methods described above
to compute the marginal likelihood and the Bayes factor are

Figure 1. Surface and filled contour representations of the marginal likelihood for the damping models MNL (left panel) and MRA (right panel) in the synthetic data
space h t= P, d( ). Equation (3) is computed over a grid with Nη = 121 and =tN 181Pd points over the ranges η ä [0.2 − 30] and τD/P ä [1, 10]. The error
model in the likelihood function (4) is σ = 0.1τd/P.
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applied to them to assess the strength of the evidence for the
nonlinear damping model relative to that for resonant
absorption.

Table A1 in the Appendix shows a listing of the cases, with
the event and loop identification numbers in Nechaeva et al.
(2019); the oscillation period; the damping time; the damping
ratio; and the oscillation amplitude. Instead of a grid over
synthetic data space, the analysis now considers the specific
pairs of measured values for oscillation amplitude and damping
ratio for each event, h t= = =D D P,i i d i i 1

101{ ( ) } . Equations (1)
and (2) with the same prior assumptions as before are used to
compute the predictions from the models. Predictions are
confronted to observations in the computation of the likelihood
function in Equation (4) and marginal likelihoods of the models
using Equation (3). The ratio of marginal likelihoods in
Equation (5) gives the Bayes factor for each case. The results
obtained for BNLRA are given in the rightmost column of
Table 1. A positive value implies evidence in favor of the
nonlinear damping model. A negative value implies evidence
in favor of resonant absorption. The strength of the evidence is
assessed with the empirical table by Kass & Raftery (1995).

The marginal likelihood for the nonlinear damping model is
larger than the marginal likelihood for resonant damping for the
majority of cases, 91 out of 101 with BNLRA> 0. The opposite
happens for the remaining 10 cases with BNLRA< 0
(BRANL> 0). The level of evidence is conclusive in 71 cases,
with Bayes factors above 2. The level of evidence is
inconclusive in 30 cases, with Bayes factors below 2. The
number of cases with positive evidence for the nonlinear
damping model is 65 (2< BNLRA< 6). There is a single case
with positive evidence for resonant damping (2< BRANL< 6).
The number of cases with strong or very strong evidence for
resonant damping is 5 (BRANL> 6). The numerical values of
BNLRA depend on the chosen priors. Increasing the upper limit

for ζ slightly favors MNL while decreasing the upper limit for R
tends to favor MRA.
Figure 3 shows Bayes factor, oscillation amplitude, and

damping ratio values for the cases with conclusive evidence
supporting either the nonlinear damping model (left panel) or
resonant absorption (right panel). The 65 cases with positive
evidence for the nonlinear model are grouped in the region in
data space where the previous analysis of the structure of the
evidence favored nonlinear damping. The six cases with
positive or strong evidence for resonant damping are
distributed in the complementary region where the low
marginal likelihood for nonlinear damping favors resonant
absorption.
Figure 4 shows the results obtained for all 101 loop

oscillations, regardless of the conclusive or inconclusive nature
of the evidence. The symbols and their colors indicate the
corresponding levels of evidence. The pattern of evidence
distribution in the general structure analysis in Section 3.1 is
maintained. Among the cases with inconclusive evidence, those
with larger marginal likelihood for nonlinear damping (edge-
colored red circles) are located at the two sides of the main area
with positive evidence for nonlinear damping. Those with
larger marginal likelihood for resonant damping (edge-colored
blue circles), spread further to the sides, with three of them
corresponding to combinations of small amplitudes with strong
damping.
The amplitudes in the observational data may be consistently

underestimated, depending on the orientation of the loop and
the distance of the observational slit from the loop apex,
because they represent the apparent amplitude projected in the
plane of the sky. Since the range of damping ratio values which
can be accurately described by MNL decreases for larger
amplitudes (Figure 1, left panel), the effect of underestimating
the actual amplitude would generally benefit this model, while
having no effect on MRA.

Figure 2. Surface and filled contour representations of the Bayes factors BNLRA (left panel) and BRANL (right panel) in the synthetic data space h t= P, d( ).
Equation (5) is computed using the marginal likelihood calculations in Figure 1.
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4. Conclusion and Discussion

Our judgment about the degree of belief in a particular model
to explain observed data is based on the assessment of how
well the model predictions agree with observed data and on
how much better this is achieved in comparison to alternative
models. These relational and relative measures of the evidence
for a model are given by the marginal likelihood and the Bayes
factor, respectively. We considered two models postulated to
explain the damping of transverse oscillations in solar coronal
loops and applied those principles of Bayesian reasoning.

The structure of the evidence shows a clear separation
between the regions in data space where the nonlinear damping
model is more plausible relative to the linear resonant
absorption model and vice versa. There is qualitative agreement

between the regions of high marginal likelihood and Bayes
factor for the nonlinear damping model and the location of
measured data for damping ratio and oscillation amplitude. The
evidence is quantified by application to 101 loop oscillations
observed with SDO/AIA. The marginal likelihood for the
nonlinear damping model is larger in the majority of the cases
and conclusive evidence in favor of this model is obtained in 65
cases. The cases with conclusive evidence for the nonlinear
damping model outnumber those in favor of linear resonant
damping by a factor of 10. The evidence for the nonlinear
damping model relative to linear resonant absorption, therefore,
is appreciable to a reasonable degree of Bayesian certainty.
The Bayes factor values in this study cannot be regarded in

absolute terms. Their accuracy is determined by the quality of

Figure 3. Bayes factor, oscillation amplitude, and damping ratio values for loop oscillations in Table 1 with positive evidence for nonlinear damping (left) and with
positive (blue)/strong (green) evidence for resonant damping (right).

Figure 4. Scatter plot of oscillation amplitude and damping ratio values for the 101 loop oscillation cases in Table 1. Color-filled circles represent cases with
conclusive evidence. Edge-colored circles represent cases with either > p M p MNL RA( ∣ ) ( ∣ ) or vice versa, yet inconclusive evidence. Red is forMNL, blue and green
for MRA.
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the data, the level of refinement of the models, and the more or
less informative nature of the prior assumptions. Improvement
on the evidence assessment can be achieved, for example, with
the use of alternative prescriptions for linear resonant
absorption that more accurately describe the early stage of
loop oscillations, as appropriate for the observational cases of
strong damping (Hood et al. 2013; Pascoe et al. 2019), the
consideration of additional physical effects (Pascoe et al.
2017b), or by further constraining the prior densities through
seismological inference of the unknown parameters (Nisticò
et al. 2013; Pascoe et al. 2016, 2017a).

The availability of specific model parameters also affects the
calculated Bayes factors. As an example, consider entry number
i= 26 in Table 1, with BNLRA=− 10.9. For this event, first
studied by Nisticò et al. (2013), estimates for loop radius,
R∼ 3.3Mm; density contrast, ζ∼ 3; and thickness of the layer,
l/R∼ 0.5, are available (Pascoe et al. 2016, 2017a, 2017b). In
contrast to the value of η= 8.8Mm for the amplitude reported in
the catalog, Pascoe et al. (2017b) quote a value of η∼ 2Mm.
Bayes factor calculations, now without the need to perform
integration over parameter space, lead to values of BNLRA∼ 13 for

η= 2.2Mm and BNLRA∼− 75 for η= 8.8Mm, which give
support to the nonlinear model and also point to an overestimation
of the amplitude in the catalog.
In general, because of our inability to directly measure the

relevant physical parameters, the Bayesian approach offers the
best course of action for judgment under uncertainty and offers
principled ways to improve the evidence assessment as better
data, more refined models and more informative priors become
available.

This research was supported by project PGC2018-102108-
B-I00 from Ministerio de Ciencia, Innovación y Universidades
and FEDER funds.
Facility: SDO/AIA (Lemen et al. 2012).
Software: NumPy (Harris et al. 2020), Matplotlib (Hunter

2007).

Appendix

Table A1 presents the results of the analysis described in
Section 3.2.

Table A1
Loop Oscillation Data from Nechaeva et al. (2019) and Computed Bayes Factors

i Event ID Loop ID P [minutes] τD [minutes] τD/P η [Mm] BNLRA

1 1 1 3.42 ± 0.06 5.34 ± 1.12 1.56 ± 0.33 1.7 0.7
2 1 2 4.11 ± 0.05 10.76 ± 2.79 2.62 ± 0.68 1.2 1.5
3 3 1 2.46 ± 0.03 8.8 ± 1.8 3.58 ± 0.73 4.7 3.9
4 3 2 3.62 ± 0.08 4.12 ± 0.47 1.14 ± 0.13 9.7 2.8
5 4 1 2.29 ± 0.03 7.18 ± 1.5 3.14 ± 0.66 4.4 3.9
6 4 2 3.47 ± 0.03 7.44 ± 1. 2.14 ± 0.29 1.2 1.2
7 7 1 1.69 ± 0.02 7.23 ± 1.3 4.28 ± 0.77 3.2 4.5
8 8 1 3.74 ± 0.07 10. ± 1. 2.67 ± 0.27 1.6 2.5
9 9 1 5.14 ± 0.17 5.09 ± 0.98 0.99 ± 0.19 4.3 1.3
10 9 2 8.95 ± 0.14 11.83 ± 4.76 1.32 ± 0.53 3.2 1.4
11 10 1 11.46 ± 0.17 8.02 ± 1.09 0.70 ± 0.10 8.9 2.0
12 11 3 2.6 ± 0.05 8.84 ± 1.5 3.40 ± 0.58 3.7 4.2
13 14 2 2.35 ± 0.07 2.69 ± 0.64 1.14 ± 0.27 3.2 1.0
14 15 1 2.07 ± 0.04 9.99 ± 4.59 4.83 ± 2.22 3.4 3.4
15 16 2 9.52 ± 0.11 12.2 ± 3.47 1.28 ± 0.36 1.7 −0.1
16 17 2 11.27 ± 0.12 16.55 ± 1.44 1.47 ± 0.13 10.0 3.0
17 18 1 5.36 ± 0.23 16.19 ± 7.67 3.02 ± 1.44 3.7 3.1
18 21 1 15.36 ± 0.4 19.19 ± 1.55 1.25 ± 0.11 4.3 2.0
19 22 1 17.86 ± 0.3 27.43 ± 4.26 1.54 ± 0.24 15.6 0.7
20 22 3 20.46 ± 0.58 35.01 ± 6.44 1.71 ± 0.32 26.6 −7.0
21 23 1 5.13 ± 0.11 8. ± 5. 1.56 ± 0.98 3.0 1.8
22 24 1 11.95 ± 0.13 18.71 ± 4.5 1.57 ± 0.38 9.2 2.9
23 26 1 3.71 ± 0.05 7.83 ± 0.62 2.11 ± 0.17 5.3 3.6
24 27 1 7.67 ± 0.04 24.22 ± 2.02 3.16 ± 0.26 9.4 −6.2
25 27 2 9.59 ± 0.09 17.57 ± 2.35 1.83 ± 0.25 9.1 3.0
26 28 1 4.28 ± 0.02 15.55 ± 1.22 3.63 ± 0.29 8.8 −10.9
27 28 2 3.38 ± 0.02 19.11 ± 4.85 5.65 ± 1.44 5.3 1.7
28 30 1 9.95 ± 0.27 16.7 ± 1.03 1.68 ± 0.11 7.4 3.3
29 34 2 5.2 ± 0.08 15.23 ± 5.5 2.93 ± 1.06 2.1 2.7
30 36 2 5.61 ± 0.03 24.83 ± 3.41 4.43 ± 0.61 4.4 3.8
31 36 4 5.53 ± 0.04 7.32 ± 1.08 1.32 ± 0.20 2.5 1.0
32 36 7 5.72 ± 0.06 14.17 ± 2.73 2.48 ± 0.48 3.4 3.5
33 36 8 4.33 ± 0.08 9.01 ± 2.16 2.08 ± 0.50 12.1 1.3
34 36 9 6.18 ± 0.05 13.15 ± 2.66 2.13 ± 0.43 13.7 −0.4
35 37 1 7.14 ± 0.07 7.53 ± 1.45 1.05 ± 0.20 16.3 2.3
36 37 2 3.6 ± 0.03 9.44 ± 0.92 2.62 ± 0.26 3.1 3.8
37 37 3 8.35 ± 0.08 15.04 ± 1.81 1.80 ± 0.22 12.7 1.2
38 37 5 4.5 ± 0.02 14. ± 2. 3.11 ± 0.44 2.2 3.7
39 38 1 7.23 ± 0.06 15.75 ± 3.09 2.18 ± 0.43 12.3 0.4
40 38 2 9.78 ± 0.19 14.62 ± 4.96 1.49 ± 0.51 13.4 2.3
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Table A1
(Continued)

i Event ID Loop ID P [minutes] τD [minutes] τD/P η [Mm] BNLRA

41 38 3 6.95 ± 0.14 9. ± 3. 1.29 ± 0.43 4.8 2.1
42 39 1 2.48 ± 0.04 7.82 ± 1.66 3.15 ± 0.67 3.1 4.0
43 42 1 15.28 ± 0.16 21.98 ± 15.6 1.44 ± 1.02 22.0 2.3
44 42 2 15.76 ± 0.12 26.64 ± 2.17 1.69 ± 0.14 27.4 −36.8
45 42 3 16.08 ± 0.21 15.76 ± 3.09 0.98 ± 0.19 23.7 0.8
46 43 4 10.45 ± 0.17 15.38 ± 2.58 1.47 ± 0.25 8.0 3.1
47 43 5 8.03 ± 0.18 9.37 ± 1.22 1.17 ± 0.15 13.0 2.7
48 46 5 4.8 ± 0.1 19.72 ± 3.23 4.11 ± 0.68 2.9 4.5
49 48 1 9.07 ± 0.14 20.71 ± 4.71 2.28 ± 0.52 7.8 3.0
50 48 2 11.88 ± 0.13 19.62 ± 2.96 1.65 ± 0.25 27.6 −11.1
51 48 5 13.5 ± 0.16 24.17 ± 5.13 1.79 ± 0.38 10.7 2.5
52 48 7 14.16 ± 0.55 13.64 ± 3.93 0.96 ± 0.28 15.0 2.7
53 49 1 8.52 ± 1.02 8.6 ± 3.6 1.01 ± 0.44 3.7 ± 1.7 1.2
54 50 1 7.36 ± 0.26 24.8 ± 12.1 3.37 ± 1.65 2.5 ± 0.6 3.0
55 51 2 13.75 ± 0.38 23.2 ± 8.9 1.69 ± 0.65 6.8 ± 1.5 2.9
56 52 1 13.51 ± 0.42 27.3 ± 11.1 2.02 ± 0.82 4.1 ± 0.8 2.7
57 52 2 12.95 ± 0.73 15.6 ± 4.4 1.20 ± 0.35 5.8 ± 1.5 2.3
58 53 1 16.17 ± 0.42 43.0 ± 13.5 2.66 ± 0.84 6.6 ± 1.3 3.1
59 54 1 11.16 ± 0.86 18.4 ± 8.2 1.65 ± 0.75 6.4 ± 1.6 2.8
60 56 3 11.83 ± 0.38 31.7 ± 10.6 2.68 ± 0.90 7.5 ± 1.3 2.7
61 57 2 2.89 ± 0.09 6.0 ± 1.8 2.08 ± 0.63 3.0 ± 0.8 2.5
62 58 1 3.44 ± 0.46 8.2 ± 4.6 2.38 ± 1.37 1.7 ± 1.0 1.5
63 59 1 5.19 ± 0.33 11.1 ± 5.2 2.14 ± 1.01 3.6 ± 1.2 2.6
64 60 3 9.59 ± 0.66 27.4 ± 12.5 2.86 ± 1.32 5.9 ± 2.2 2.9
65 63 1 4.45 ± 0.07 27.3 ± 10.2 6.13 ± 2.29 4.7 ± 0.9 2.6
66 64 1 2.17 ± 0.13 6.9 ± 3.6 3.18 ± 1.67 0.8 ± 0.3 0.5
67 64 3 7.19 ± 0.20 35.9 ± 14.1 4.99 ± 1.97 4.4 ± 0.5 3.1
68 64 5 20.76 ± 1.03 28.4 ± 7.3 1.37 ± 0.36 9.8 ± 2.4 2.8
69 64 6 20.43 ± 0.47 29.6 ± 7.5 1.45 ± 0.37 14.5 ± 2.6 1.9
70 65 2 17.82 ± 0.49 25.6 ± 6.9 1.44 ± 0.39 8.8 ± 2.0 2.9
71 66 1 2.38 ± 0.05 14.4 ± 7.0 6.05 ± 2.94 2.1 ± 0.4 3.6
72 67 1 17.19 ± 0.76 21.1 ± 5.8 1.23 ± 0.34 12.8 ± 3.6 2.6
73 68 1 7.34 ± 0.66 11.3 ± 5.0 1.54 ± 0.70 2.1 ± 0.8 0.9
74 69 1 6.22 ± 0.18 32.0 ± 14.8 5.14 ± 2.38 2.3 ± 0.5 3.5
75 69 2 12.81 ± 0.32 21.8 ± 4.6 1.70 ± 0.36 6.1 ± 1.3 3.1
76 70 2 9.85 ± 0.40 15.5 ± 4.3 1.57 ± 0.44 6.2 ± 1.7 2.9
77 70 3 5.56 ± 0.16 27.8 ± 13.7 5.00 ± 2.47 1.2 ± 0.3 2.7
78 72 1 13.30 ± 0.72 18.2 ± 5.9 1.37 ± 0.45 6.7 ± 1.8 2.7
79 72 2 6.82 ± 0.15 20.8 ± 6.4 3.05 ± 0.94 4.0 ± 0.7 3.6
80 72 4 18.59 ± 0.78 49.3 ± 20.6 2.65 ± 1.11 13.4 ± 2.1 1.4
81 73 1 10.21 ± 0.48 16.5 ± 4.6 1.62 ± 0.46 3.7 ± 0.9 2.2
82 74 2 4.85 ± 0.23 14.8 ± 6.8 3.05 ± 1.41 2.1 ± 0.6 2.6
83 74 3 2.90 ± 0.27 3.3 ± 1.0 1.14 ± 0.36 1.6 ± 0.7 −0.7
84 75 1 10.76 ± 0.28 15.4 ± 3.8 1.43 ± 0.36 12.1 ± 1.1 2.5
85 75 2 8.48 ± 0.16 26.8 ± 7.6 3.16 ± 0.90 9.7 ± 1.2 1.0
86 75 3 8.71 ± 0.42 17.3 ± 5.4 1.99 ± 0.63 6.2 ± 1.5 3.1
87 77 1 7.69 ± 0.50 24.3 ± 12.8 3.16 ± 1.68 4.7 ± 1.4 3.0
88 78 2 5.88 ± 0.43 7.6 ± 2.7 1.29 ± 0.47 2.4 ± 1.1 0.7
89 79 3 2.95 ± 0.33 4.4 ± 2.2 1.49 ± 0.76 1.5 ± 0.8 −0.0
90 80 1 12.51 ± 0.57 20.1 ± 5.5 1.61 ± 0.45 9.7 ± 2.5 2.8
91 80 2 9.69 ± 0.26 19.0 ± 4.8 1.96 ± 0.50 5.4 ± 1.4 3.2
92 81 1 11.35 ± 0.83 14.4 ± 5.1 1.27 ± 0.46 3.0 ± 1.1 1.2
93 83 1 5.99 ± 0.51 10.9 ± 4.6 1.82 ± 0.78 3.7 ± 1.2 2.4
94 84 1 3.78 ± 0.33 15.6 ± 8.3 4.13 ± 2.23 2.7 ± 1.0 3.2
95 87 1 5.94 ± 0.32 25.1 ± 10.8 4.23 ± 1.83 3.9 ± 1.0 3.3
96 87 2 9.24 ± 0.62 12.7 ± 4.6 1.37 ± 0.51 6.9 ± 2.2 2.7
97 88 1 9.38 ± 0.19 13.0 ± 5.4 1.39 ± 0.58 5.0 ± 0.4 2.4
98 88 3 13.75 ± 1.18 15.5 ± 6.5 1.13 ± 0.48 5.3 ± 1.8 2.1
99 90 1 9.32 ± 0.31 8.6 ± 2.4 0.92 ± 0.26 5.7 ± 1.4 1.8
100 92 1 6.51 ± 0.31 9.1 ± 2.4 1.40 ± 0.37 3.9 ± 1.3 2.0
101 93 1 8.32 ± 0.10 21.4 ± 4.9 2.57 ± 0.59 21.5 ± 2.4 −5.2

Note. The table gives the entry number i, event ID, loop ID, oscillation period P, damping time τD, damping rate τD/P, oscillation amplitude η, and computed Bayes

factor BNLRA = − BRANL. Errors for damping ratio are calculated from those for period and damping time as = +t tR R RP P
2 2

d d , where R refers to the relative error.
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