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Abstract

In mathematicscollocation methao is a method for the numerical ution of ordinary differentialpartial
differential and integral equations. The idea is to chaofeite-dimensional space of candidate solutipns
(usually polynomial up to a certain degree) and a number otgai the domain (called collocatid
points), and to select that solution which satisfies theergiequation at the collocation point.
numerical method for solving non-linear two-point boundary vatelems was implemented which
based on collocation method. Two-point Taylor polynomial afeorsix was used as trial function [to
obtain the residual function. The method was implemented on sristing problems solved with other
numerical methods to show that the method can be equal useti¢othe problem, the results obtained
were compared to verify the reliability and accuracyhef tnethod and it was observed that collocation
method is more effective in each case because theigminimal compare with the results obtained with
the other numerical methods.
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1 Introduction

Most of the scientific problems in Engineering are non-linéading the exact solutions of such problems
are quiet difficult. Therefore, there have been attertgpidevelop new techniques for obtaining analytical
solutions which reasonably approximate the exact solutiBesearchers have used several methods to
tackle this type of problems, these include, Aregbesplaliel Two-point Taylor series for the numerical
solution of two-point [1], Kasi and Raju examined Cubic Bi& Collocation Method for Fourth Order
Boundary Value Problems [2], Noor et al. [3] used VariatbrParameter Method, Odejide and Adesina
studied the solution of non-linear fifth order boundary vgitgblems [4],Vedat and Hassan, also used the
method of Differential Transform [5], Odejide and Aregbaselorked on Method of Weighted [6], Oderinu
and Aregbesola, applied method of Weighted Residugbasitition [7], Inayat et al. [8] used New lterative
Method and Shooting Method via Taylor series also apple@derinu and Aregbesola [9].

In this paper, collocation method was applied to solvinglimaar two-point boundary value problems. The

two-point Taylor polynomial of order six was used as tfiaiction because it converges faster than the
previous order used by other authors, which on substitutito the differential equation gives the residual

function. The residual function was then minimized witthia collocation points and the trial function was

also forced to satisfy the boundary conditions given to olstame set of equations.

2 Method of Solution

Definition: Let a and b be two distinct points. ff(X) JC*"[a,b] then f(X) can be approximated
by the ponnomiaIPZm_l(X) given as

Do (%) = (X a)mmz'l SOCH b)*

(x- a)

+(x-p)" Z/’x =fn @

where A, and B, are constants to be determined which satisfied the giverdaouoonditions.

and

B C M - dk[fw} 2
A "olxk{(x—lo)m}x=a (x-a)" @

And the remainder is given as

£ = Pyra () = an ()‘? (x=a)"(x-b) with a<é<b, )

Equation (1) is referred to as two-point Taylor polynormaglproximation, representing the evaluated
derivatives with constants and with m = 6, the followirgyevobtained.



Akinpelu and Alao; ARJOM, 2(5): 1-7, 2017; Article. ARJOM.30642

f :(x—a){i B 00 }+(x—b){i/x(x'k!a)}

fo = By(x—a)° + B (x—a)°(x—b) + B,(x-a)°(x—b)* + B,(x —a)*(x—b)® + B,(x~b)°(x~a)*
+B,(x-a)° (x—b)® + A, (x-b)® + A (x-b)°(x—a) + A,(x—b)®(x—a)* + A,(x-b)®(x—a)®
+A,(x=b)°(x-a)* + A(x—h)°(x-a)° @

Where A and B, are constants to be determined dae 0, 1. . . 6.

Weighted Residual Method: Suppose we have a differential equation
L(u(x))=f in the domainQ (5)
B,(u)=Q on 0Q, (6)

where L(u) denotes a general differential operator (Lirganon-linear) involving spatial derivatives of
dependent variable u, f is a known function of positiop.(\B represents the approximate number of

boundary conditions anf is the domain with the boundad§2 .
Equation (1) is forced to satisfy the boundary conditionschvigives some sets of equations and the
residual function is obtained by substituting equation (1) fiéooriginal differential equation which was

then minimized at the collocation points within the domain.sDlving these systems of equations together
the constants and the approximate solution were obtained.

3 Numerical Applications

Problem 1 Solve

fV(x)=f23(X) - x*°+4x° —4x" +8x°® —4x* +120x - 48. [2] @)
Subject to the boundary conditions

f(0)=0; f@=1 f'(0) =0; f'@=1
The exact solution is

f(X)=x>—-2x" +2x°.
Following the procedure discussed above, the approximatéosoles obtained:

f, = x° =5x°(x=1) +15x°(x-1)* -33x°(x-1)° + 61x°(x—1)* —10099x° (x - 1)°
+199(x-1°x* +12(x-1)° x> +39.99(x-1)°x* +101(x -1)°x°
Problem 2: Solve

£V (x) = e¥f2(x) [3]
®)
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Subject to the boundary conditions
f(0)=1 f=e? fO=-1 f@Q=-e f"O=1 f'@Q=e

The exact solution is

f(x)=e™

Following the procedures discussed in Problem 1 to obtain,

f, = 0.3678794418° - 2.575156088° (x - 1) +10.11668463° (x—1)° - 29.49166854° (x—1)°
+71.2x%(x-1)* 150741666 %® (x—1)° (x-1)° + 71.2x°(x-1)* —150741666K° (x-1)° + (x—1)°
+5(x-1)°x +155(x ~1)°x* +37.833x ~1)° x* + 79.5416666x —1)° X* +150.7416667x —1)° x°

Problem 3: Solve

32fV =e™f3(x) [7]

©)
Subject to the boundary conditions
ey = L vy - L 3 R
f(0)=1 f'©== f'0)==, f@M=e?, f'BH==e
2 4 2
The exact solution is
X
f(x) = e2
Following the procedures discussed in problem1 to obtain,
f, =1.6487212%° —9.067966998°(x—1) + 29.88307304°(x—1)* - 76.21901042°(x-1)*
+1657007813°(x-1)* —3224533854° (x—1) + 65(x—-1)°x+24.125x-1)°x*
+67.2708333&-1)°x* +1567526042x —1)° x* +3224533854x —1)°x°
Problem 4: Solve
¥V =e*f?(x) [4&[3] (10)

Subject to the boundary conditions

f(0)=f'(0)=f"(0) =1 fO=f@m=e
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—_ X
The exact solution is f (X) =€

Following the procedures discussed in Problem 1 to obtain,

fs = 2.718281828° -13.59140914°(x—1) + 42.13336834°(x—1)* —102841662%°(x -1)*
+216216667%°(x—1)* —409758333%°(x—1)° + 7(x—1)® x + 27.5(x - 1)° x*
+80.166666x-1)°x* +1935416667x—1)°x* +409.7583338x - 1)°x°

Table1l. Comparison of absoluteerror between the exact and the computed valuesfor problem 1

X Exact Collocation Galerkin with CubicB
method quintic B-spline spline collocation

0.0 0.0 0.0 0.0 0.0

0.1 0.0 0.0 4.31x10° 4.92x10°
0.2 0.0 0.0 1.81x10° 680x10°
0.3 0.0 0.0 3.58x10° 6.36x10°
0.4 0.0 0.0 4.20x10° 4.35x10°
0.5 0.0 0.0 4.95x10° 1.37x10°
0.6 0.0 0.0 7.09x10° 2.15x10°
0.7 0.0 0.0 6.56x10° 4.65x10°
0.8 0.0 0.0 3.87x10° 6.26x10°
0.9 0.0 0.0 2.80x10° 4.83x10°
1.0 0.0 0.0 0.0 0.0

Table 2. Comparison of absolute error between the exact and the computed valuesfor problem 2

X Exact Collocation Method DTM (n=17)
0.0 0.0 0.0 0.0

0.1 0.0 0.0 1.8x10°
0.2 0.0 0.0 4.7 x10°
0.3 0.0 0.0 7.9 x108
0.4 0.0 1 x10%° 1.5 x10’
0.5 0.0 1x101° 1.4 x10’
0.6 0.0 0.0 1.64x10
0.7 0.0 0.0 2.0x10°
0.8 0.0 1 x10%° 2.3 x10’
0.9 0.0 0.0 2.4 x10’
1.0 0.0 0.0 1.6x107

Table 3. Comparison of absolute error between the exact and the computed valuesfor problem 3

X Exact Collocation method ADM DTM

0.0 0.0 0.0 0.0 0.0

0.1 0.0 0.0 3.32x10° 7.82 x10°
0.2 0.0 1.0x10° 2.06 x10* 4.99 x10°
0.3 0.0 0.0 5.21 x10* 1.30 x10*
0.4 0.0 0.0 1.48 x10° 2.28 x10¢
0.5 0.0 0.0 1.17 x10° 3.12 x10*
0.6 0.0 0.0 1.26 x10° 4.01 x10*
0.7 0.0 0.0 1.10 x10° 5.23 x10¢
0.8 0.0 0.0 7.09 x10* 2.52 x10*
0.9 0.0 1.0x 10° 2.45 x10* 3.12 x10*
1.0 0.0 0.0 1.40x10° 1.20 x10°
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Table 4. Comparison of absolute error between the exact and the computed valuesfor problem 4

X Exact Collocation method VIM HPM VOP

0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.0 0.0 1.0x10° 1.0 x10° 1.3 x10%
0.2 0.0 0.0 2. 0x10° 2.0 x10° 1.0 x10't
0.3 0.0 0.0 1. 0x108 1.0 x108 3.2 x10tt
0.4 0.0 1.0x10° 2. 0x10® 2.0 x108 7.0 x10%
0.5 0.0 0.0 3.1x108 3.1 x108 1.2 x10%°
0.6 0.0 0.0 3.7 x108 3.7 x108 1.9 x108
0.7 0.0 1.0x10° 4.1 x10° 4.1 x10° 2.8 x10%°
0.8 0.0 1.0x10° 3.1 x108 3.1 x108 3.7 x10%°
0.9 0.0 0.0 1.4 x108 1.4 x108 4.7 x10%°
1.0 0.0 0.0 0.0 0.0 0.0

Error =/exact-approximate/

The comparison of the absolute error between the exa@svand the computed values of each method in
the literature were tabulated in above tables and it vasrs that collocation method was the same with the
exact solution at some points and the error at othergwias better in comparison with other methods.

4 Conclusion

In this paper, two-point Taylor polynomial of order siasvused as trial function in using collocation
method to solve non-linear two-point boundary value prohldhe computed results were compared with
other methods referenced and the exact solution. From ritdefs considered the method was more
accurate than other methods such as Adomian Decomposititimd/eDifferential Transform Method,
Variational Iterative Method, Variation of Parameter Met, Homotopy Perturbation Method, Galerkin
with Quintic B-Spline and Cubic B-Spline Collocation. Thesevident from the error of the computational
results obtained. The method has the sole advantage oftmggee solution in polynomial forms.
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