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ABSTRACT

Aims: The objective of this paper is to introduce a Relativistic Stochastic Process that
calculates the number of cosmic ray and high energy solar flare particles that enter the
atmosphere.
Study Design: The Relativistic Stochastic Process is tested against the Arley model.
Place and Duration of Study: Department of research and development, at Economics
Traffic Clinic in Paris, between January 2013 and March 2013.
Methodology: The Relativistic Stochastic Process is a derivative of the Arley's
probabilistic model. Although Arley's simplified model gives satisfactory results, it does not
adequately address the phenomenon of cosmic ray and high energy solar flare particle
showers.
Results: The simulation with the Relativistic Stochastic Process gives better results
compared to the Arley model.
Conclusion: Relativistic Stochastic Process is more realistic and thus accurate and
reliable.

Keywords: Cosmic rays; solar flares; atmosphere; probabilistic differential equations;
random walk; velocity; energy-momentum tensor; electromagnetic force.
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1. INTRODUCTION

The objective of this paper is to introduce a Relativistic Stochastic Process (R.S.P.) that
calculates the number of cosmic ray and high energy solar flare particles that enter the
atmosphere. (R.S.P.) is a derivative of the Arley's [1,2], probabilistic model. The Arley model
is based on the probabilistic system of recursive differential equations where the solution to
the PDE (Probabilistic Differential Equations) is given by the Poisson distribution. Arley
made two major assumptions that simplified his model and gave explicit solutions. He
assumed that the probabilities of absorption of each particle increase linearly in time, and the
probabilities of multiplication remain constant. Though Arley's simplified model gives
satisfactory results, it does not adequately address the phenomenon of cosmic ray and high
energy solar flare particle showers. There is a good chance that the solution (the probability
of (n) particles entering the atmosphere) is either higher or lower than what is calculated by
the simplified Arley PDE model. The accuracy of estimation depends on many factors such
as the particle's initial energy-momentum level, and particle velocity. The natural extension
to the model is a more complicated stochastic process, [3] where in addition to time, other
adjustments are made. In order to deal with the complexities involved in modeling, the
simplified assumptions of the Arley model are modified. In the (R.S.P.) model it is assumed
that the probability of particle absorption is a random walk and the probability of particle
energy multiplication is a function of the velocity and the angle from which particles enter the
atmosphere.

Edward P. Ney in 1959 [4,5] put forward the idea of the role of cosmic rays either directly or
via solar turbulence and wind induce climate change. Cosmic rays and solar flares in the
form of large energy release and the stream of X-ray and Extreme Ultra Violet (EUV) rays
affect the Earth's atmosphere. The impact is notably observed in cloud formation and thus
cooling of the climate, annual cloud cover variations, weakening of monsoon rainfalls and
vice versa, formation of relatively highly charged aerosols and cloud droplets at cloud
boundaries, production of ultra-small aerosol particles orders of magnitude smaller than
cloud condensation nuclei, (CCN), total and spectral solar irradiance, and finally sudden
flares produce large amounts of X-rays and EUV energy. The complications due to the
impact of solar flares and cosmic rays on the atmosphere have lead to the recent
development of cosmic ray ionization models following the works of Ney, notably the works
of Svensmark and colleagues,[6,7,8] and many other researchers [9,10,11,12].

Many techniques are used to detect and estimate the flux of cosmic ray particles that enter
the earth's upper atmosphere and eventually hit the surface of the earth. For example,
cosmic rays can be detected using particle detectors aboard satellites or high altitude
balloons. The detection is mainly done using a technique developed by Fleischer, Price, and
Walker, [13] which consists of exposing a sheet of polycarbonate resin thermoplastic to
space or high altitudes and count the number of hits. So far, there exist very basic stochastic
models that attempt to predict the number of cosmic ray particles that enter the earth's
atmosphere. The stochastic processes used come in the form of a system of partial
differential equations; in particular, Markov processes where all future probability relations
are entirely determined by the present state probabilities. Typically, these probabilities
indicate the occurrence of continuous events where the changes from the current state occur
during any time interval, however small, but given the probability laws, in small time intervals
the changes are small.

There is a need for a reliable mathematical model to estimate the expected number of
particles that enter the atmosphere. Systems of stochastic partial differential probabilities do
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not seem to adequately describe the phenomenon of cosmic ray showers and solar flares
impact on the environment. The estimated expected number of particles entering the earth's
atmosphere would either regularly increase or regularly decrease. This is in contrast to the
observations. According to many published experiments, [14,15,16] the number of electrons
first rapidly increases due to high energy levels and then rapidly decreases when
approaching the earth's atmosphere as the particles lose their initial momentum and thus
energy. To describe this dynamic more complicated models of stochastic processes are
needed. Complication comes from the fact that the state of the dynamic system cannot be
described by a simple integer. The Arley model is an attempt to obtain more realistic results.
He postulates that: 1. the probability of particle absorption is linearly monotonically
increasing in time, 2. the probability of particle multiplication remains constant in time.
Though the Arley model produces more or less acceptable results, there is still room for
improvement. The improvement comes in the form of: the Relativistic Stochastic Process or
(R.S.P.). To implement the R.S.P. model new assumptions are required. The new
assumptions are: 1. the probability of particle absorption is a random walk, 2. the probability
of particle multiplication is a function of the velocity and the angle from which particles enter
the atmosphere. This process consists of replacing the intensities of particle absorption and
multiplication with their relativistic equivalences. The relativistic energy of particle absorption
(~ ) is defined as a function of relativistic energy-momentum tensor ( ),( gRT ) and the
electromagnetic force (B):

BT gR  ),(
~ (1)

(R) is the Riemann tensor, and (g) is the gravitational force.
The relativistic energy-momentum tensor ( ),( baT ) is generally expressed by the Einstein's
field equation as:

       babababa ggRRT ,,,,0 2
1

 (2)

( 0 ) is the gravitational constant, ( ) is the cosmological constant, ( ),( baR ) is the Riemann

tensor, ( a
aRR  ) is the scalar curvature. It is posited that the particles ejected from the

center of the solar eruption have maximum energy momentum and their trajectory towards
earth will be a 1-form Riemann tensor (R) and thus have the greatest chance of absorption
and multiplication. In general, cosmic rays particles retain their maximum energy momentum
in space if not impacted by gravitational zones, and thus would follow a 1-form Riemann
tensor trajectory. The 1-form Riemann tensor ( a

cbR ),( ) is expressed by:

     
ca

cb
ca

cb
a
cb RR  ,,,  (3)

The relativistic energy of particle multiplication (~ ) is the relativistic energy-momentum

tensor ( ),( gRT ), per unit of relativistic time ( R ) as:
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The relativistic time ( R ) is expressed as:
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In Equation (5), (v) represents particle velocity, (c) is the speed of light, and (R) is the
Riemann tensor. The relativistic intensity of particle absorption (~ ) is defined as the

relativistic energy of particle absorption ( ~ ) multiplied by the relativistic time ( R ) multiplied
by the number of particles (n).

Rn   ~~
(6)

The relativistic intensity of particle multiplication (~ ) is the relativistic energy of particle
multiplication (~ ) multiplied by the number of particles (n).

n ~~
(7)

The Relativistic Stochastic Process (R.S.P.) takes up the structure of the Arley model and
modifies it using the relativistic variables introduced in this section.

2. ARLEY MODEL

One particular stochastic Markov process is the Poisson process used by Arley in
determining the number of cosmic rays. A simple assumption is made, and that is to keep
the energy of particle multiplication ( ) constant meaning (  i ),(i) represents each state
of particle multiplication and absorption during the particle trajectory into the earth's
atmosphere. Similarly the energy of absorption (  i ), where ( ) is the energy of particle
absorption. Assuming that the probability of particle absorption is an increasing function of
time and that the probability of particle multiplication should stay constant during any time
interval, this leads to the intensity of (n) particle absorption being equal to ( tn  ), and the
intensity of (n) particle multiplication being equal to ( n ). Given this premise, a system of
stochastic differential equations can be constructed that takes the following form, [17,18].
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)()(
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(8)

The natural initial conditions are ( 1)0(0 P ), and ( 0)0( nP ) for ( n1 ). The expected
number of particles M(t) entering the atmosphere during any interval (t) is given by:
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The maximum expected number of particles is given by (


t ). Following the method of

generating functions, Arley produces an explicit solution for the system of equations (8) in
the form of:
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Though the system of equation (8) and the solution agree with a certain number of
experimental results, they do not adequately describe the phenomenon of cosmic rays
showers. The discrepancy between the observational data and the outcome of the Arley
model is due to the main assumptions of the model, notably the intensities of particle
multiplication and absorption. The intensity of particle multiplication increases linearly as a
function of time, and the intensity of absorption increases with the number of cosmic rays
and solar flares particles. The Arley model uses as input the average number of particles
entering the atmosphere at any time (t) which further explains the shortcomings of the
model. The results of the Arley model simulation runs when compared to actual
observational data are either overestimated or underestimated.

3. RELATIVISTIC STOCHASTIC PROCESS (R.S.P.)

The system of Equations (8) does not adequately describe the phenomenon of cosmic rays.
Given the overall pattern, the expected number of particles would either constantly increase
or constantly decrease, whereas in reality, the number of electrons first rises rapidly, then it
decreases, taken into account that with increasing depth of atmospheric permeation the
particles lose energy so are absorbed rapidly. Another shortcoming of Eq. (8) is pointed out
by Arley himself which is that the actual fluctuations in the number of cosmic ray entry into
the atmosphere are much larger than what is calculated by Eq. (8). Arley believed that the
actual probabilities of particle multiplication after entering the atmosphere and consequently
particle absorption depend on the particle's energy level, on the magnitude of the solar wind,
on the initial velocities, the trajectories of the cosmic ray particles before and after entering
the atmosphere, the velocities, and the trajectories of the solar wind. Arley, concluded that to
adequately replicate the actual situation, more complicated stochastic processes are
required.

Arley, did not propose a complicated stochastic process model, he suggested a simple
modification to (8). He assumed that the probability of particle absorption in the atmosphere
increases linearly with time, while the probability of particle multiplication stays constant. The
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new stochastic probability model that will be introduced is built over the Arley model, is more
complicated, since the structure relies on two major factors: the velocities and the
trajectories of cosmic rays and the velocities and the trajectories of the solar wind. This
structure by necessity depends entirely on relativistic concepts of curvature and time. The
details are given in this section. The Arley model provides a reasonable and simplistic model
of cosmic rays and solar flares particles entry into the atmosphere. Many aspects of the
model can be kept such as the initial boundary conditions ( 1)0(0 P ) and ( 0)0( nP ) for

( n1 ) the differential probability system of equations (8) can be retained in the form
proposed by Arley, because it is a correct basis model for theoretical calculations. The
assumption that the energy of particle multiplication and absorption is constant cannot be
kept due to the relativistic transformations of these variables. The relativistic stochastic
system is the modification of the Arley model where the time interval (t) is replaced by the
relativistic time ( R ) and the intensities of particle absorption (  ) and multiplication ( ) are
replaced by their relativistic equivalences (~ ) and (~ ). In this section, it is assumed that
(R), the Riemann curvature remains a 1-form for all particles approaching and entering the
earth. Other major difference with the Arley model is the replacement of the simple
probability   RnP  with the Bayesian probability   RP Rn  .

     
                RPnRPnRPnRP

RPRP

RnRRnRnRRn

RRR
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(12)

  RP Rn  is the Bayesian (conditional) probability of observing (n) events during the

relativistic time interval ( R ), given that the Riemann tensor (R) is a 1-form.
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 (13)

The relativistic intensity of absorption (~ ) is given as:

 Rn   ~~
(14)

Where the relativistic energy of absorption is expressed as:

BT gR  ,
~ (15)

(B) is the electromagnetic force and  gRT , can be calculated given the following Equation:

babababa ggRRT ,,,,0 2
1

  (16)
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The relativistic time ( R ) is expressed as:
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The relativistic intensity of particle multiplication (~ ) is expressed in a similar way as the
Arley model:

n ~~
(18)

The relativistic intensity of multiplication (~ ) is a function of the energy-momentum tensor

 gRT , and relativistic time  R .
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In order to find an exact solution to the stochastic system of Equations (12), the energies (~

),(~ ) and the intensities (~ ),(~ ) of particle multiplication and absorption are estimated by

setting the relativistic time ( R ) equal to a historical time (  histt ) when the relativistic energy-

momentum tensor  gRT , and electromagnetic force (B) are observed to be at maximum.

This allows for fixed values of (~ ),(~ ) and (~ ),(~ ) which are based on historical
observations. The first Equation of (12) can be rewritten given the relativistic intensity of
absorption (~ ), Equation (14) as:

     RPRP RR  1
'
0

~
 (21)

Equation (21) can be rewritten expanding the Bayesian probability   RP Rn  as:
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Given the probability space ( ) and a probability measure (P) on a Borel field ( ) of
subsets of ( ), there exists a pair  , , a probability measure (P) on ( ) and a Borel

subfield     T , such that any function        RRQ ,,,  has the following
properties: For any fixed (R),(Q ) is a T-measurable function of ( ), and for any fixed ( ) a

probability measure on    [19,20,21,22,23]. Thus for any   TT  and   R , there
exists

     
R dPRQRTP



0

, (23)

It is assumed that the expected number of particles entering earth is formulated as Equation
(9) in the section on the Arley model, except that the energies of particle multiplication ( )
and absorption ( ) are replaced by their relativistic equivalences. Given this, the function

  RQ , , with  R , a constant Riemann 1-form is given as:
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Equation (23) can be written as:
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Given Equation (25), the solution to the first part of the system of Equations (12) can be
calculated as:
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For the case of (n) particle entry, the solution to the Relativistic Stochastic Process is based
on the method of generating functions and is similar to the solution given by Arley. Notice
that in R.S.P. the variable time ( R ) is independent of the relativistic energy of multiplication
and absorption.
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4. RSP Vs ARLEY

In this section the Arley model is compared with the Relativistic Stochastic Process (R.S.P.)
for the case of zero and (n) particles entries. For the purpose of comparison, in the case of
the R.S.P. model the following parameters are chosen: ( 10  ),( 1R ) (hr), ( 1 ),

n=592,  km/s14080v , the speed of light  km/s105300c , the Riemann

tensor  0abcdR , the scalar curvature  1R , and the electromagnetic force (B=0.3
amp). The results of the application of the R.S.P. model gives the following probabilities for
(0) and (n) particles entries as: The probability of zero particle entry
  0.72242630 RP R , and   0.5RP Rn  . The results of the R.S.P. test check and

confirm experimental observations. For ( Nn 0 ),(N large), the relativistic probability
  RP R0 , the probability of particle absorption in  R,0 is at maximum, and the

relativistic probability of (n) events   RP Rn  in  
RRR  , decreases steadily to zero

as the relativistic time ( R ) increases. To test the Arley model, the energy of multiplication

and absorption are taken to be  1 , and  1 . The probability of zero particle entry is

found to be   3934693.00 tP , and the probability of (n) particles entry   1tPn . The
Arley model predicts the probability of absorption in (0,t) to be low, while the probability of
occurrence of (n) events in  ttt , is one. This would imply an over-estimation when

 Nn  and an under-estimation when (n=0). Fig. 1 illustrates the probabilities   tPn and

  RP Rn  of (n) cosmic rays particles entry for both the Arley and the (R.S.P.) models for

 100000  n .

Fig. 1. Comparison of the R.P.S. the Arley simulation results for  100000  n
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5. CONCLUSION

This paper proposes a Relativistic Stochastic Process (R.S.P) model which is a
modification of the Arley model. The modifications consist of : (1) Changing time from a
simple variable (t), with an affine trajectory to a non-linear relativistic variable ( R ). The
relativistic energy of absorption ( ~ ) and multiplication (~ ) replace their equivalences (  )

and ( ). (~ ) and (~ ) are assumed to be functions of the energy-momentum ( ),( gRT )

tensor, the Riemann (R) tensors, and the relativistic time ( R ). Though the modifications
introduce some complications, the new R.S.P. is an attempt to render the stochastic models
used more realistic and thus the probability that at any time interval (t), (n) particles enter the
atmosphere are more credible. The conclusion derived from this exercise is that the energy-
momentum of particles, the Riemann tensor, and the relativistic time parameters play an
important role in the calculation of the probabilities.
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