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ABSTRACT 
 

It has been found that the genes of a number of protein components of sea anemone venoms 
underwent significant diversification in the course of evolution. The elucidation of the molecular 
mechanisms of sea anemone peptides interactions with targets let investigators in the last decade 
actively study the molecular organization and the functioning mechanisms of cytoplasmic 
membranes, the various types and subtypes of ion channels/receptors involved in the processes of 
perception, processing, intra- and intercellular signal transduction, both in a body physiological and 
pathological state. A short characteristic of the structure and functional activity of several classes of 
sea anemone peptide components, which have pronounced pharmacological potential, is 
presented in this mini-review.  
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1. INTRODUCTION 
 
The search for natural compounds with 
pharmacological potential, the study of their 
diversity consistent patterns of evolutionary 
development, structure-functional relationships 
with biological targets, and an effective 
application in biotechnology and medicine are 
priority research areas in various fields of life 
sciences. At the same time, researchers face 
one of the most urgent tasks. It is the creation of 
agents highly specific to various targets and 
having high therapeutic potential aimed at 
treating socially significant diseases (cancer, 
neurodegenerative, cardiovascular, etc.) [1]. It is 
known that marine coelenterates (sea 
anemones, jellyfishes) producing a huge variety 
of protein toxins are the most attractive and 
studied producers of biologically active 
substances (along with sea snakes and cone 
mollusks, as well as terrestrial venomous 
organisms: snakes, arthropods, insects) used for 
creation promising drugs for pharmacology on 
their basis [2].  
 
Owing to evolutionary processes of 
diversification (functionalization, sub- and 
neofunctionalization), multigene families 
encoding combinatorial peptide libraries were 
formed: APETx-like toxins [3-5], pore-forming 
toxins (actinoporins) [6], Kuntz-type peptides 
[7,8,9,10], which were evolutionarily selected 
highly homologous molecules with functional 
activity aimed at expanding of biological targets 
in the body of a prey or a potential predator. The 
search for new natural peptide ligands with high 
specificity to different biological targets is an 
urgent task that researchers face [1,2]. The study 
of the structure-functional relationships of the 
peptide components of sea anemones is the 
theoretical basis for searching new targeted 
actions of pharmacological compounds. 

 

2. THE ANALYSIS OF THE CURRENT 
STATE OF RESEARCH IN THIS AREA  

 
To date it has been established that the major 
components of sea anemone venomous secrets 
are: neurotoxins (5 kDa) (Fig. 1a, b) [11], some 
toxic and non-toxic APETx-like peptides (4 kDa) 
(Fig. 1c) [3-5], pore-forming toxins (PFTs) (20 
kDa) (Fig. 1d) [6,12], as well as non-toxic Kunitz-
type peptides (6 kDa) (Fig. 1e) [7,13-15] and β-
defensin-like peptides (4 kDa) (Fig. 1f) [16]. Site-
directed mutagenesis, electrophysiological and in 
silico studies have shown that the selective 
action of sea anemone protein ligands and their 

activity are conditioned by the interaction of 
functionally significant residues with their binding 
sites on the appropriate biological targets: 
voltage-gated Nav [8] and Kv [17] ion channels 
(for a and b), acid-sensing (ASICs) channels [3-
5] (for c) and many other ones [18], cytoplasmic 
membranes (for d) [19], proteases [7,13-15] 
and/or TRPV1 [20,21] and H-1 histamine [22] 
receptors (for e), pancreatic alpha-amylase 
[16,23] (for f). Using modern biotechnological 
omics technologies and approaches (genomics, 
transcriptomics, proteomics as well mass 
spectrometry), high-throughput NGS and in vitro 
screening (cell biology and electrophysiology) 
made it possible to study the structural diversity 
and functional specificity of toxins produced by 
sea anemones, as well as the molecular 
mechanisms of their interaction with various 
targets [24]. 
 

The elucidation of the molecular mechanisms of 
sea anemone peptides interactions with targets 
let investigators in the last decade actively study 
the molecular organization and the functioning 
mechanisms of cytoplasmic membranes, the 
various types and subtypes of ion 
channels/receptors involved in the processes of 
perception, processing, intra- and intercellular 
signal transduction, both in a body physiological 
and pathological state [2]. Thus, it has been 
reliably established that violation of the functional 
activity of targets causes various types of 
channelopathies and pathologies while the 
blocking or activating effect of sea anemone 
peptides can have a pharmacological effect on 
them. So toxic and non-toxic sea anemone 
venomous peptides, due to their unique and 
individual properties as well as their possessing 
large structural diversity and having 
selectivity/specificity for various targets, are of 
great interest as a basis for the design of new 
potential therapeutic agents.  
 

At the moment, a very small amount of effective 
and safe protein ligands is observed to act 
selectively on certain ion channels and exhibit a 
therapeutic effect [25]. From the three structural 
types of toxins modulating Kv channels, the 
bifunctional toxins of type 2, kalicludines AsKC 1 
– AsKC 3 (Actinia viridis, 58–59 aa) are the most 
studied, they inhibit both trypsin and Kv1.2 and 
calcium (Ca2+)-dependent potassium channels 
[26]. The presence of pharmacological action 
was reliably shown only for type 1 toxin, ShK 
from Stichodactyla helianthus (35 amino acid 
residues) and its recombinant analog, 20kDa-
PEG-[Lys16]ShK [26]. Both of them bind 
selectively to Kv1.1 and Kv1.3 of T-lymphocytes 
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without affecting other cell types, are                      
involved in the regulation of membrane                   
potential and signal transduction, and                         
inhibit the secretion of interleukins IL-17 and IL-4 
in monkeys [27]. This ability may be                     
promising in the treatment of autoimmune 
diseases (multiple sclerosis, rheumatoid 
arthritis). 

 
Among the fifty representatives of the four 
structural types (1–4) of neurotoxins (identified to 
date) (Fig. 1a, b) modulating Nav channels and 
slowing down the kinetics of their rapid 
inactivation upon binding to site 3, no 
pharmacological effect has been found [8]. At the 
same time, highly homologous sea anemone 
APETx-like peptides with a similar structural fold, 
non-toxic peptides Hcr 1b-1 – Hcr 1b-4 
(Heteractis crispa) (Fig. 1c) are able to inhibit 
acid-sensing ASIC1a and ASIC3 channels [4,5], 
exhibiting an anxiolytic effect and sufficiently high 
anti-inflammatory activity [28]. It has recently 
been found that APETx-like peptides from sea 

anemone Heteractis magnifica inhibit Nicotinic 
Acetylcholine Receptors [29]. It has been 
established that, in addition to homomeric 
ASIC3, APETx2 (Anthopleura elegantissima) 
(Fig. 1c) inhibits heteromeric ASIC1a/3, 
ASIC1b/3, and ASIC2b/3 channels, effectively 
potentiates ASIC1b and ASIC2a ones [3], 
showing an analgesic effect in the models of 
acid-induced muscle pain as well as one caused 
by inflammation. 

 
It has been found that actinoporins StnI from S. 
helianthus and RTX-A (=Hct-A) from H. crispa 
(Fig. 1d), have antitumor activity [19]. Thus, Hct-
A is cytotoxic to colon cancer cells (SNU-C4) 
[24], monocytic leukemia (THP-1), cervical 
cancer (HeLa), and breast cancer (MDA-MB-
231). It prevents epidermal growth factor-induced 
tumor transformation of mouse JB6P+Cl41 
epithelial cells by activating p53-independent 
apoptosis and inhibiting the activity of oncogenic 
nuclear factors AP-1 and NF-κB [30]. The ability 
of RTX-A to interact with membrane integrins of 
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Fig. 1. Multiple sequence alignments of representatives of sea anemone peptides and 

polypeptides belonging to the different peptide groups, such as neurotoxins of type 2 (а): RTX-
I, RTX-II, RTX-III, RTX-IV, RTX-V, RTX-VI, δ-SHTX-Hcr1f from Heteractis crispa, Rp-II from 
Radianthus paumotensis, SHTX-IV from Stichodactyla haddoni, Sh1 from Stichodactyla 

helianthus; neurotoxins of type 1 (b): ATX-II from Anemonia sulcata, ApA, ApB from 
Anthopleura xanthogrammica [8]; APETx-like peptides (c): Hcr 1b-1 – Hcr 1b-4 [4,5] from H. 

crispa and APETx1, APETx2 from A. elegantissima [3]; pore-forming toxins (d): RTX-A from H. 
crispa [6] and StII from S. helianthus [9]; Kunitz-type peptides (e): APHC1 – APHC3 [7], InhVJ 

[10], HCRG1, HCRG2 [7,11], , HCGS1.10, HCGS1.36, HCGS1.19, HCGS1.20 from H. crispa [7,12], 
HCRG21 [7]; β-defensin-like peptides (f): magnificamide from H. magnifica and helianthamide 

from S. helianthus [13]. Highly homologous residues and/or sequence fragments are indicated 
in color. Identical amino acid residues are shown on a gray (a, b, c) and black (d) background, 

point substitutions of residues in the sequences are shown on white; Arg13 residue, 
functionally significant for the binding of neurotoxins to NaVs (a, b), as well as RGD tripeptide 
binding of PFTs to integrins (d) are highlighted in red. The P1 residue is shown (e): residues 

Lys, Arg, Thr, which determine the interaction of Kunitz peptides with targets, proteases 
and/or TRPV1 receptor, are highlighted in red. The straight lines at the top of (a) show C1-C5, 
C2-C4, C3-C6 disulfide bridges between cysteine residues (shown in bold). All alignments are 

made with the help program Vector NTI. 
 
some tumor cells and sea urchin eggs (which 
lack the lipid receptor of PFTs, sphingomyelin) 
resulting in the actinoporin antitumor effect and 

inhibition of egg fertilization processes, is 
discussed in the review [31]. In recent years the 
actinoporins StnI, gigantoxin-4 (Stichodactyla 
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gigantea), EqtII (Actinia equina), and FraC 
(Actinia fragacea) have been used for creating 
immunoconjugates with various ligands for 
targeted cytolytic action on parasitic and tumor 
cells [32].    
 
The multigene family of H. crispa Kunitz-type 
peptides [7] (Fig. e) is a source of a huge variety 
of representatives which activity determined by 
certain functionally significant residues is also 
associated with acting on various targets 
[13,14,18]. Among the representatives of this 
family, some belonging to so-called “analgesic 
cluster” [7] have also been found: APHC1–
APHC3 [7,20], HCRG21 [21], HCRG1, HCRG2, 
HCGS1.10, HCGS1.36, HCGS1.19, HCGS1.20 
[7,10-12] (Fig. e),which activity is due to both a 
trypsin-inhibiting effect [22,23] and inhibition of a 
vanilloid (TRPV1) receptor [20,21] and some Kvs 
[18]. Besides, Kunitz-type peptides demonstrate 
neuroprotective activity in the neurotoxicity model 
induced by 6-hydroxydopamine [33], as well as 
peptide HCRG21, blocker of TRPV1, which 
suppresses TNF-α production and prevents the 
development of edema and hypersensitivity in 
acute local inflammation induced by carrageenan 
[34]. As a result, the peptides exhibit pronounced 
analgesic and anti-inflammatory activity.  
 
Thus, expanding the basis of pharmacologically 
active sea anemone peptides will certainly 
contribute not only to the successful 
development of new therapeutic agents, but also 
to a deeper understanding of the mechanisms of 
functioning of their biological targets. 

 

3. CONCLUSION 
 
Thus, large-scale studies of the structure-
functional relationships of sea anemone 
proteinaceous components and data presented 
in this mini-review on the biological activity of 
several peptide groups aimed at a wide range of 
biological targets indicate their high 
pharmacological potential. This points to the 
topicality of search for the new producers of 
biologically active substances among marine 
coelenterates, which represent one of the richest 
and most promising natural sources of future 
drugs. 
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