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ABSTRACT 
 

Detrending is a statistical technique that removes systematic variations or trends from time series 
data, allowing analysts to focus on the underlying patterns or fluctuations. While multiple detrending 
approaches have been applied but rarely discussed their consistency of outcomes and 
effectiveness in accurately capturing better yield trends. The validation of drought occurrences has 
proven to be a challenging task due to the non-stationary characteristics of time series data related 
to crop yield. This research utilizes time series of cotton yield data from the Marathwada region 

Original Research Article 

https://doi.org/10.9734/arja/2024/v17i3488
https://www.sdiarticle5.com/review-history/116997


 
 
 
 

Kumar et al.; Asian Res. J. Agric., vol. 17, no. 3, pp. 191-204, 2024; Article no.ARJA.116997 
 
 

 
192 

 

covering the period from 1998 to 2021. Three traditional trend models, including simple linear 
regression, second-order polynomial regression and central moving average were applied. 
Additionally, two machine learning models (random forest and support vector regression) were 
tested with a novel approach. Moreover, two decomposition models (additive and multiplicative) 
were used to remove non-linear trends in crop yield time series data. The performance of the 
chosen models was evaluated based on metrics such as root mean square error, mean absolute 
error, Nash-Sutcliffe efficiency, and index of agreement. The results suggest that the most effective 
detrending approach involves combining a random forest machine learning model with an additive 
decomposition model. 
 

 
Keywords: Drought; machine learning; detrending; decomposition model. 
 

1. INTRODUCTION  
 
Drought is one of the most pervasive and 
impactful natural phenomena, exerting profound 
effects on agriculture, ecosystems, economies 
and societies worldwide [1]. Drought can be 
defined as an extended period of abnormally low 
precipitation leading to water scarcity, droughts 
can manifest in various forms, from 
meteorological droughts characterized by 
reduced rainfall to hydrological droughts affecting 
water supply and agricultural droughts impacting 
crop growth and yield [2,3]. 
 
India's agricultural landscape is one of the 
world's most agrarian economies, with a 
substantial portion of its population reliant on 
agriculture for livelihood and sustenance. India's 
vulnerability to drought underscores the profound 
implications of water scarcity on agricultural 
productivity, rural livelihoods and national 
development. In the past, droughts have had a 
notable economic impact on the agricultural 
industry in India [4,5]. Prodhan et al. [6] have 
warned of an increased risk of yield reduction 
under extremely dry weather conditions. While 
past studies have highlighted the overall 
agricultural losses during specific incidents, 
challenges related to advancing technology and 
other non-climatic factors hinder the 
differentiation of these losses across various 
events impacting crop yields. 
 
In the context of drought validation, detrending 
crop yield data serves multiple purposes. Firstly, 
it aids in establishing baseline conditions and 
historical trends in crop productivity, allowing for 
the identification of deviations from expected 
levels due to drought or other environmental 
stressors. Secondly, detrending facilitates the 
calibration and validation of drought indices and 
models by providing a standardized framework 
for assessing model performance against 
observed data. Moreover, detrending crop yield 

data enhances the interpretability and reliability 
of drought monitoring and early warning systems, 
enabling stakeholders to differentiate between 
short-term fluctuations in yield attributable to 
weather variability and longer-term trends driven 
by factors such as technological advancements, 
land use changes, and market dynamics [7,8]. 
 
Previously, the detrending of crop yield was 
achieved by employing a predetermined function, 
such as a simple linear regression model (SLR) 
[9], polynomial regression model (PLR) [10] and 
locally weighted regression [11]. Finger [12] 
utilized a robust regression technique for 
detrending crop yield data. Tao et al. [13] 
conducted trials on simulated yield trends and 
observed that detrending techniques relying on 
smoothing methods displayed a general 
advantage over linear, loglinear, and 
autoregressive integrated moving average 
models (ARIMA). The most notable outcomes 
were obtained from the moving average and 
robust locally weighted regression models. 
Choudhary et al. [14] utilized piecewise 
regression to detrend crop yield for agricultural 
insurance and discovered it to be superior to 
simple linear regression. Lu et al. [15] employed 
six trend simulation models and two 
decomposition models for detrending crop yield, 
identifying the spatial and temporal impacts of 
drought on the United States. Irawan et al. [16] 
implemented locally weighted regression 
(LOWESS) to detrend crop yield for drought 
visualization in the West Java province of 
Indonesia. 
 
Previously, detrending crop models using 
machine learning (ML) is not discussed. The 
strengths and limitations of these approaches are 
well understood, evident in their foundational 
algorithms and practical applications [17]. SLR, a 
widely used traditional technique, offers 
interpretability but lacks predictive power [18]. It 
struggles with the nonlinearity present in crop 
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yield time series. While conventional regression 
methods struggle with these issues, ML models 
offer potential solutions. These models can 
handle complex functions and demonstrate 
better predictive accuracy [19]. 
 
The Marathwada region in India has been 
significantly impacted by drought events, leading 
to severe water scarcity and agricultural crises. 
Studies have highlighted the region's 
vulnerability to drought, with frequent and 
extreme drought events affecting the area 
[20,21]. The impact of drought in Marathwada 
has been profound, with reports of consecutive 
drought events from 2012 to 2016 [20]. The 
severity of the situation is evident from the fact 
that the region has witnessed a high number of 
farmer suicides, indicating the dire 
consequences of these drought events [22,23]. 
The Marathwada region of India faces significant 
challenges due to recurrent drought events, 
leading to water scarcity, agricultural crises, and 
socio-economic impacts. Research efforts have 
been directed toward understanding the 
dynamics of drought in the region, developing 
monitoring tools, and implementing mitigation 
measures to address the adverse effects of 
drought on the local population and environment. 
 
This research compares conventional regression 
techniques with ML methods for detrending, 
evaluating their strengths and weaknesses in 
terms of applicability over space and time, 
reliability, and efficiency. Our study explores a 
method for self-adaptive detrending of data, able 
to automatically model long-term non-stationary 
and nonlinear yield trends influenced by 
technological progress, thus removing trends 
caused by extreme weather. The application of 
this method to detrend crop yield data and create 
standardized visual representations of drought is 
investigated. By synthesizing empirical evidence, 
case studies, and methodological frameworks, 
we aim to elucidate the importance of detrending 
in enhancing the accuracy and reliability of 
drought monitoring and prediction efforts, 
ultimately contributing to more effective drought 
management strategies and resilience-building 
initiatives in agricultural systems. 
 

2. MATERIALS AND METHODS  
 

2.1 Study Area and Data Collection 
 
The state of Maharashtra is demarcated into six 
distinct divisions. The Marathwada region, also 
referred to as the Aurangabad division, 

encompasses a total of eight districts namely: 
Aurangabad, Beed, Hingoli, Jalna, Latur, 
Osmanabad and Parbhani. Positioned within the 
central plateau, Marathwada region spans from 
17037’ North to 20039’ North latitude and 740 33’ 
East to 780 22’ East longitude, covering a 
geographical area of 64590 sq. Km. This 
particular region is located in the rain shadow 
zone of the Sahyadri mountain range within the 
Western Ghats of Maharashtra. Characterized by 
a plateau topography with gentle undulations, 
Marathwada region is bordered by the Pune 
division to the south-west, Nashik division to the 
north-west, Amravati division to the Northeast, 
Telangana state to the south-east, and 
Karnataka state to the south. Additionally, the 
region includes extensions of the Ajantha and 
Balaghat hill ranges and is primarily drained by 
the prominent river Godavari. The Marathwada 
region experiences an average annual rainfall of 
776 mm. 
 

The time series data of crop area and yield for 
the years 2000 to 2021 were collected from 
Directorate of Economics and Statistics, Ministry 
of Agriculture and Farmers Welfare, Government 
of India, (www.desagri.gov.in). This study selects 
the dominant crop grown in Marathwada region 
in the last two decades. We examined detrending 
techniques and showed how a drought year 
affects crop production during the selected year 
in Marathwada region. 
 

2.2 Dominant Crop Selection 
 

The major crop for the Marathwada region was 
selected based on the long-term average crop 
area during the Kharif season. we evaluated 
district-wise crop-growing areas in the Kharif 
season. We found cotton is a major crop in 
Marathwada region (Fig. 2). 
 

2.3 Trend Simulation Methods 
 

In this study, we apply three conventional 
regression techniques including simple linear 
regression, second-order polynomial model, 
Central Moving Average model (CMA) and two 
machine learning models namely Random 
Forest, and Support Vector Regression to 
simulate the trend of cotton yield over time. After 
trend simulation, to detrend the data we applied 
two decomposition models (additive and 
multiplicative) and compared them. These 
techniques were tested individually for each 
district of Marathwada. All data analyses were 
conducted using R programming language with 
necessary packages. 
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2.3.1 Simple linear regression 
 
Simple linear regression is a statistical technique 
used to model the relationship between two 
variables, where one variable (the dependent 
variable) is predicted from the other variable (the 
independent variable) through a linear equation. 
The formula for simple linear regression is 
expressed as: 
 

𝑌𝑡 =  𝛽0 + 𝛽1𝑡                                             (1) 
 
Where Yt represents the dependent variable 
(cotton yield), t represents the independent 
variable (time), 𝛽0  is the intercept term, 𝛽1 is the 
slope coefficient, representing the change in the 
dependent variable for a one-unit change in the 
independent variable. 
 
2.3.2 Second-order polynomial model 
 
A second-order polynomial model extends the 
simple linear regression model by allowing for a 
curvilinear relationship between the variables 
[24,25]. It is expressed as: 
 

𝑌𝑡 =  𝛽0 +  𝛽1𝑡 +  𝛽2𝑡2                                 (2) 
 

Where, Yt, t, 𝛽0 , 𝛽1 and are defined as in simple 
linear regression. t2 represents the squared term 
of the independent variable, allowing for 
curvature in the relationship. 
 
2.3.3 Central moving average model 
 
The central moving average model is a simple 
smoothing technique used to identify trends in 
time series data. It calculates the average of a 
specified number of consecutive observations, 
centered around each data point. The application 
of the central moving average technique to crop 
yield trend analysis holds significant implications 
for understanding the long-term dynamics of 
agricultural productivity, identifying cyclical 
patterns, and detecting anomalies indicative of 
environmental stressors or management 
interventions [15]. The formula for the central 
moving average model is: 
 

𝐶𝑀𝐴𝑌𝑡 =  
1

2𝑚 + 1
 ∑ 𝑦𝑖

𝑡+𝑚
𝑖 = 𝑡−𝑚                                  (3) 

 
Where: CMAYt represents the central moving 
average at time t, yi represents the observed 
value at time i. m is the number of periods to 
include in the moving average calculation. 

 
 

Fig. 1. Location of Marathwada 
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Fig. 2. Crop grown area during kharif in Marathwada region
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2.3.4 Random forest 
 
Random forest is a machine learning algorithm 
that utilizes an ensemble of decision trees to 
make predictions. It is particularly effective for 
regression tasks involving complex, non-linear 
relationships. The formula for random forest is 
not explicitly defined as it involves a collection of 
decision trees, each trained on a random subset 
of the data [26,27]. In this study, we aim to utilize 
RF as a tool for regression analysis. The term 
"decision tree" originates from the visual 
depiction of the algorithm's flow, mirroring tree 
structures. Initially, a set number of training sets 
are randomly chosen, leading to the creation of 
distinct trees. Each node employs a random 
selection of independent variables to divide the 
data into smaller units within each tree. These 
trees are expanded fully, and the predicted 
constant response value is calculated by 
averaging the fitted reactions from all trees. The 
success of the random forest algorithm in 
addressing overfitting trees contributes 
significantly to its efficacy as an ML technique 
[28,29]. 
 
The effectiveness of the RF algorithm largely 
depended on the number of decision trees used 
and the selection of potential attributes within a 
subset [30]. The relationship between the 
number of trees and the out-of-bag (OOB) error 
was analyzed to identify the optimal number of 
decision trees, resulting in the most favorable 
outcomes. 
 
2.3.5 Support vector regression 
 
Support Vector Regression (SVR) is a machine 
learning algorithm known for its robustness and 
versatility. It works by mapping the input data into 
a higher-dimensional feature space and finding 
the hyperplane that best fits the data while 
maximizing the margin. The formula for SVR 
involves optimization techniques to find the 
optimal hyperplane, but it can be summarized as: 
 

𝑌 =  ∑ 𝛼𝑖𝐾(𝑥𝑖 ,
𝑛
𝑖 = 1 𝑥)  +  𝑏                           (4) 

 
Where Y represents the predicted value, xi are 
the training data points, 𝛼𝑖  are the Lagrange 
multipliers, K is the kernel function and b is the 
bias term. This study investigates different kernel 
types such as linear, polynomial and radial basis 
functions and selects the optimal kernel based 
on minimal root mean square error. Grid search, 
a technique for hyperparameter optimization, is 
utilized to methodically explore a predefined set 

of hyperparameters and identify the combination 
that results in the best performance for the 
machine learning model. 
 

2.4 Decomposition Model 
 

Upon employing suitable statistical models to 
simulate the trend, our next step involves utilizing 
decomposition models to eliminate this simulated 
trend and extract detrended data. Decomposition 
models play a pivotal role in data analysis by 
unveiling underlying patterns and trends, thereby 
furnishing valuable insights into intricate time 
series or observational data. Detrending stands 
out as a primary application of decomposition 
models, aiming to disentangle observed data 
from these underlying patterns or trends [31]. 
 

Two methods are available to accomplish this 
task: the additive and multiplicative models. The 
additive model derives detrended data by 
subtracting trend line values from the observed 
data. This method is suitable when variations in 
the data remain relatively consistent across 
different levels. Notably, the residuals maintain 
the same unit of measurement as the original 
data [15]. 
 

Conversely, the multiplicative decomposition 
approach involves deriving detrended data by 
calculating the ratio between the observed data 
and trend line values. These detrended data 
points lack dimensionality and illustrate the 
percentage discrepancies compared to the trend 
line values. This model is preferable when the 
magnitude of fluctuations in the data varies 
across different levels [15]. 
 

2.5 Performance of Trend Simulation 
Model 

 

To assess the performance of the trend 
simulation models, we employ four commonly 
used metrics: Root Mean Square Error (RMSE), 
Nash-Sutcliffe Efficiency (E), Mean Absolute 
Error (MAE), and Index of Agreement (IOA). 
These metrics provide valuable insights into the 
accuracy and reliability of the simulated trends 
compared to observed data. RMSE quantifies the 
average deviation between observed and 
simulated values. It is calculated as the square 
root of the mean squared differences between 
observed and simulated values. Nash-Sutcliffe 
Efficiency measures the relative accuracy of the 
simulated values compared to the mean 
observed value [32]. MAE provides the average 
magnitude of errors between observed and 
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simulated values. It is calculated as the mean of 
the absolute differences between observed and 
simulated values. IOA assesses the agreement 
between observed and simulated values, 
considering both the variability and bias of the 
data [33]. These performance metrics provide 
comprehensive insights into the accuracy, 
precision, and overall agreement of the trend 
simulation models with observed data. By 
evaluating the RMSE, E, MAE and IOA, we can 
effectively assess the suitability of each model 
for capturing the underlying trends in cotton yield 
data and informing decision-making processes. 
The computational formula of evaluation metrics 
are as follows; 
 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1                          (5) 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1                                (6) 

 

𝐸 =  1 −  
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖=1

                                    (7) 

 

𝐼𝑂𝐴 =  1 −  
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (|𝑦̂𝑖−𝑛
𝑖=1 𝑦̅𝑖|+ |𝑦𝑖−𝑦̅𝑖|)2                    (8) 

 
3. RESULTS AND DISCUSSION 
 
The increase in cotton production observed can 
be linked to advancements in technology, 
improvements in management techniques and 
the collective influence of long-term climate 
changes. Removing the trend from the yield data 
is utilized as a strategy to address the temporal 
fluctuations in statistical analyses [34]. 

 
3.1 Trend Simulation Model Comparison 
 
Fig. 2 depicts the chronological progression of 
cotton yield in the Aurangabad district of 
Marathwada from 1998 to 2021 and presents the 
results of five models utilized for trend simulation. 
The cotton yield time series in each district 
showcases a non-linear upward trend that 
influences the long-term pattern of crop yield. 
This trend is mainly attributed to technological 
advancements and increased inputs. 

 
The SLR model proves to be inadequate in 
explaining the fluctuations in cotton yield across 
the study areas (Fig. 3(a)) due to the non-linear 
nature of the technology trend, lacking 
coherence or rationale. While a quadratic trend 

improves the correlation, it still falls short of 
capturing the gradual rise evident in the trend 
(Fig. 3(b)). These predetermined models do not 
possess the necessary flexibility to remove non-
linear and non-stationary trends consistently 
across all districts of Marathwada. 
 
Inspecting the visual representation of cotton 
yield reveals the need for implementing a CMA 
model to address the inconsistencies observed in 
the crop yield data (Fig. 3(c)). A specific time is 
required to perform the CMA model. 
Nevertheless, the process of determination and 
selection of time remains subjective. Moreover, 
the utilization of a CMA model presents a 
boundary issue. To implement a 3-year CMA 
model, it is essential to have 3-year data before 
and following the year of interest. 
 
Consequently, when the data point shifts to the 
initial or latest years, the absence of adequate 
data for estimation leads to the identification of 
the first three and last three data points as 
missing data. Furthermore, the presence of a 
single missing data in the crop yield series can 
result in an additional 3 data points being 
designated as missing data for the CMA model. 
Even in the absence of missing data in the time 
series, the CMA model for three years remains 
loses two data points at the starting and ending 
positions in the time series. It's important to 
highlight that the effectiveness of the CMA model 
is compromised or biased near the border of time 
series data. 
 
In the ML model, random forest performs best 
among all other models. We used out-of-bag 
error for an optimum number of decision trees. 
The trend curve predicted by the random forest 
model closely mirrors the time series of cotton 
yield and demonstrates strong performance for 
the study area (Fig. 3(d)). Support vector 
regression model performance is lesser than the 
random forest model. This study incorporates the 
most suitable kernel and user-defined 
hyperparameters C and ε (Table 1) for better 
accuracy of this model. The primary focus of this 
study is to explore regression models employing 
SVR and different kernel functions namely linear, 
radial basis functions and polynomial. Grid 
search optimization and k-fold cross-validation 
techniques are utilized to optimize these 
hyperparameters, aiming to minimize error 
estimates while reducing bias and variance in the 
dataset. 
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Fig. 3. Trend simulation model comparison of cotton yield (1998-2021) for Aurangabad: (a) 
simple linear regression model; (b) second-order polynomial model; (c) central moving 

average model of 3-year and 5-year; (d) random forest model; (e) support vector regression 
model 

 
Table 1. Optimized hyperparameters used in support vector regression 

 

Districts Kernel Cost function (C) Epsilon (ε) 

Aurangabad Radial basis function 10 0.1 
Beed Radial basis function 1 0.1 
Hingoli Radial basis function 1 0.2 
Jalna Radial basis function 10 0.2 
Latur Radial basis function 1 0.5 
Nanded Radial basis function 1 0.5 
Osmanabad Radial basis function 1 0.5 
Parbhani Radial basis function 1 0.2 
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Table 2. Trend simulation models evaluation results 
 

District Models RMSE MAE IOA E District Models RMSE MAE IOA E 

Aurangabad SLR 0.6063 0.5183 35.13 7.11 Latur SLR 0.9387 0.7056 62.49 25.38 
PLR 0.5356 0.4363 65.56 27.50 

 
PLR 0.8986 0.6944 68.75 31.61 

CMA3 0.4342 0.3141 83.45 55.55 
 

CMA3 0.6029 0.3795 89.31 70.96 
CMA5 0.5260 0.4119 73.23 36.23 

 
CMA5 1.0091 0.6568 65.97 21.07 

RF 0.2989 0.2406 92.18 77.42 
 

RF 0.4878 0.3144 93.10 79.85 
SVR 0.4838 0.3008 78.80 40.85 

 
SVR 0.9735 0.7931 44.91 19.74 

Beed SLR 0.4334 0.3385 34.73 6.15 Nanded SLR 0.3314 0.2787 73.34 38.28 
PLR 0.4316 0.3287 35.43 6.96 

 
PLR 0.3304 0.2802 73.71 38.67 

CMA3 0.2976 0.2177 82.26 57.97 
 

CMA3 0.2651 0.2270 86.16 62.41 
CMA5 0.3683 0.2667 58.25 10.15 

 
CMA5 0.3213 0.2738 75.17 41.29 

RF 0.2465 0.1702 88.32 69.65 
 

RF 0.2004 0.1726 92.26 77.43 
SVR 0.3709 0.2489 62.43 31.26 

 
SVR 0.3268 0.2728 73.17 40.01 

Hingoli SLR 0.6411 0.4386 47.62 13.69 Osmanabad SLR 0.4947 0.4008 39.70 8.40 
PLR 0.6107 0.4047 57.64 21.69 

 
PLR 0.4516 0.3894 60.81 23.67 

CMA3 0.4180 0.3308 86.59 64.55 
 

CMA3 0.3303 0.2652 86.05 61.51 
CMA5 0.5760 0.4551 63.72 29.53 

 
CMA5 0.3899 0.3220 78.49 46.78 

RF 0.3218 0.2349 92.04 78.25 
 

RF 0.2498 0.2045 91.90 76.66 
SVR 0.5804 0.3928 57.81 29.26 

 
SVR 0.4867 0.3913 54.02 11.35 

Jalna SLR 0.6536 0.5220 42.09 9.49 Parbhani SLR 0.7643 0.4799 55.17 20.04 
PLR 0.6452 0.5205 46.08 11.79 

 
PLR 0.7356 0.4030 62.15 25.94 

CMA3 0.5491 0.4179 73.20 39.90 
 

CMA3 0.6473 0.3698 76.36 45.74 
CMA5 0.6943 0.5920 45.62 1.48 

 
CMA5 0.8322 0.5226 52.35 13.70 

RF 0.4103 0.3255 85.08 64.33 
 

RF 0.4598 0.2658 88.66 71.06 
SVR 0.5980 0.4331 71.25 24.23 

 
SVR 0.7339 0.3997 59.54 26.27 
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Fig. 4. Multiplicative decomposition model for Aurangabad (Random Forest Model) 
 

 
 

Fig. 5. Additive decomposition model for Aurangabad (Random Forest Model) 
 

3.2 Evaluation Metrics for Model 
Performance 

 
Table 2 presents the metrics values utilized for 
evaluating the effectiveness of trend simulation 
models. The findings indicate that SLR models 
are the least precise in terms of fitting. 
Conversely, second-order PLR models offer a 
superior fit compared to SLR models. The central 
moving average demonstrates enhanced 
performance when fitting cotton yield, 
outperforming SLR and PLR. In contrast to 

traditional regression methods, the ML model 
shows superior performance. Among all models, 
the random forest model achieves the highest 
accuracy of 78.95% for the Latur district of 
Marathwada. 
 

3.3 Decomposition Models Comparison 
 
Guttormsen [35] and Zhang and Qi [36] 
employed residuals derived from subtracting 
crops from the regression line to illustrate the 
deviation of crops from the norm, deeming these 
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as detrended data. These studies operated on 
the assumption that fluctuations and trends were 
combined additively. Lu et al [15] proposed a 
multiplicative model for detrending long-term 
crop yield. By utilizing a multiplicative 
decomposition method to remove trends from the 
time series, the detrended cotton production in 
Marathwada displays an increasing variance 
over time (Fig. 4). As the variance of detrended 
data is standardized according to crop output 
scale, it progresses towards enhanced 
stationarity over time, favoring an additive 
decomposition model (Fig. 5). Hence, an additive 
decomposition model was applied to detrend 
cotton yield following the implementation of a 
suitable trend simulation technique. 
 

3.4 Selection of Detrending Model  
 

In this research, the choice of detrending model 
is influenced by factors such as performance, 
reliability and efficiency. The analysis provided 
above emphasizes the unsatisfactory 
performance of SLR and PLR. Although the CMA 
model emerges as the most effective among 
traditional models, it is constrained by certain 
limitations and is notably impacted by missing 
data. On the other hand, two machine learning 
models including RF and SVR outperform 
conventional detrending methods. These ML 
models excel in automatically identifying 
underlying patterns in nonstationary and non-
linear time series of cotton yield, thereby 
providing a robust trend fitting for crop yields. 
These detrended crop yields are viewed as 
anomalies in crop yield, indicating values higher 
or lower than the average crop yield. 
Consequently, the integration of the random 
forest model with an additive decomposition 
technique is highlighted as the preferred 
detrending approach for cotton yield in the 
Marathwada region. 
 

4. CONCLUSION 
 

This study is focused on identifying the most 
appropriate detrending technique in cotton yield 
for the study area. The study evaluates various 
traditional and machine learning trend simulation 
models using four quantitative metrics. The 
findings suggest that SLR and PLR show the 
weakest fit. In contrast, CMA surpasses the other 
conventional regression techniques but is limited 
by boundary issues. Among the machine 
learning models, the random forest model 
demonstrates superior accuracy. Furthermore, 
two decomposition models were assessed, 
revealing that the additive decomposition model 

is better suited for detrending crop yield. This 
choice is based on adjusting the variance of 
detrended crop yield according to the crop yield 
magnitude scale, leading to increased 
stationarity over time. Thus, the recommended 
approach for detrending cotton crop yield 
involves utilizing the random forest model 
alongside the additive decomposition model. 
 

The methodology applied in this study entails 
standardizing cotton yield to enable a 
quantitative evaluation of its correlation with 
drought. This method also aids in visualizing the 
impact of drought on cotton yield. Further 
correlation analyses comparing various drought 
indicators and cotton yield anomalies can be 
conducted to validate drought occurrences. The 
study observed a relation between cotton yield 
anomalies and drought years, evident from 
significant drought years (2012, 2015 and 2018) 
illustrated in Fig. 5. By examining cotton yield 
anomalies in Marathwada, variations in cotton 
yield below normal levels due to drought 
conditions were captured. 
 

This detrending methodology is not exclusive to 
cotton and drought studies but can be applied to 
different crops and natural disasters. Our study 
offers a framework for assessing the impact of 
drought on crop production, aiding policymakers 
and stakeholders in developing robust strategies 
for risk management and mitigation of extreme 
weather effects on agriculture. This study can be 
enhanced by incorporating more machine 
learning and deep learning algorithms and used 
to make short-term predictions on the impact of 
technological advancements on crop yields. 
Additionally, the crop yield anomalies obtained 
through this method can be utilized in agricultural 
research focusing on climate change impacts. 
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