Natural SINEUP RNAs in Autism Spectrum Disorders: RAB11B-AS1 Dysregulation in a Neuronal CHD8 Suppression Model Leads to RAB11B Protein Increase

Zarantonello, Giulia and Arnoldi, Michele and Filosi, Michele and Tebaldi, Toma and Spirito, Giovanni and Barbieri, Anna and Gustincich, Stefano and Sanges, Remo and Domenici, Enrico and Di Leva, Francesca and Biagioli, Marta (2021) Natural SINEUP RNAs in Autism Spectrum Disorders: RAB11B-AS1 Dysregulation in a Neuronal CHD8 Suppression Model Leads to RAB11B Protein Increase. Frontiers in Genetics, 12. ISSN 1664-8021

[thumbnail of pubmed-zip/versions/2/package-entries/fgene-12-745229-r1/fgene-12-745229.pdf] Text
pubmed-zip/versions/2/package-entries/fgene-12-745229-r1/fgene-12-745229.pdf

Download (1MB)
[thumbnail of pubmed-zip/versions/2/package-entries/fgene-12-745229-r1/fgene-12-745229.pdf] Text
pubmed-zip/versions/2/package-entries/fgene-12-745229-r1/fgene-12-745229.pdf - Published Version

Download (1MB)

Abstract

CHD8 represents one of the highest confidence genetic risk factors implied in Autism Spectrum Disorders, with most mutations leading to CHD8 haploinsufficiency and the insurgence of specific phenotypes, such as macrocephaly, facial dysmorphisms, intellectual disability, and gastrointestinal complaints. While extensive studies have been conducted on the possible consequences of CHD8 suppression and protein coding RNAs dysregulation during neuronal development, the effects of transcriptional changes of long non-coding RNAs (lncRNAs) remain unclear. In this study, we focused on a peculiar class of natural antisense lncRNAs, SINEUPs, that enhance translation of a target mRNA through the activity of two RNA domains, an embedded transposable element sequence and an antisense region. By looking at dysregulated transcripts following CHD8 knock down (KD), we first identified RAB11B-AS1 as a potential SINEUP RNA for its domain configuration. Then we demonstrated that such lncRNA is able to increase endogenous RAB11B protein amounts without affecting its transcriptional levels. RAB11B has a pivotal role in vesicular trafficking, and mutations on this gene correlate with intellectual disability and microcephaly. Thus, our study discloses an additional layer of molecular regulation which is altered by CHD8 suppression. This represents the first experimental confirmation that naturally occurring SINEUP could be involved in ASD pathogenesis and underscores the importance of dysregulation of functional lncRNAs in neurodevelopment.

Item Type: Article
Subjects: e-Archives > Medical Science
Depositing User: Managing Editor
Date Deposited: 24 Mar 2023 09:02
Last Modified: 24 Jun 2024 04:37
URI: http://ebooks.abclibraries.com/id/eprint/787

Actions (login required)

View Item
View Item